问题很简单。 如何在SWI prolog中构建我的Graph以实现Dijkstra的算法?
我找到了this,但这对我的工作来说太慢了。
答案 0 :(得分:4)
这种实施并不是那么糟糕:
?- time(dijkstra(penzance, Ss)).
% 3,778 inferences, 0,003 CPU in 0,003 seconds (99% CPU, 1102647 Lips)
Ss = [s(aberdeen, 682, [penzance, exeter, bristol, birmingham, manchester, carlisle, edinburgh|...]), s(aberystwyth, 352, [penzance, exeter, bristol, swansea, aberystwyth]), s(birmingham, 274, [penzance, exeter, bristol, birmingham]), s(brighton, 287, [penzance, exeter, portsmouth, brighton]), s(bristol, 188, [penzance, exeter, bristol]), s(cambridge, 339, [penzance, exeter|...]), s(cardiff, 322, [penzance|...]), s(carlisle, 474, [...|...]), s(..., ..., ...)|...].
SWI-Prolog提供了属性变量,然后this answer可能与您相关。 我希望今天晚些时候发布使用属性变量的dijkstra / 2实现。
编辑好吧,我必须说第一次使用属性变量进行编程并不容易。
我正在使用上面链接的@Mat的答案中的建议,滥用属性变量以获得常量时间访问到数据附加到算法所需的属性。我(盲目地)实施了wikipedia algorithm,这是我的努力:
/* File: dijkstra_av.pl
Author: Carlo,,,
Created: Aug 3 2012
Purpose: learn graph programming with attribute variables
*/
:- module(dijkstra_av, [dijkstra_av/3]).
dijkstra_av(Graph, Start, Solution) :-
setof(X, Y^D^(member(d(X,Y,D), Graph)
;member(d(Y,X,D), Graph)), Xs),
length(Xs, L),
length(Vs, L),
aggregate_all(sum(D), member(d(_, _, D), Graph), Infinity),
catch((algo(Graph, Infinity, Xs, Vs, Start, Solution),
throw(sol(Solution))
), sol(Solution), true).
algo(Graph, Infinity, Xs, Vs, Start, Solution) :-
pairs_keys_values(Ps, Xs, Vs),
maplist(init_adjs(Ps), Graph),
maplist(init_dist(Infinity), Ps),
ord_memberchk(Start-Sv, Ps),
put_attr(Sv, dist, 0),
time(main_loop(Vs)),
maplist(solution(Start), Vs, Solution).
solution(Start, V, s(N, D, [Start|P])) :-
get_attr(V, name, N),
get_attr(V, dist, D),
rpath(V, [], P).
rpath(V, X, P) :-
get_attr(V, name, N),
( get_attr(V, previous, Q)
-> rpath(Q, [N|X], P)
; P = X
).
init_dist(Infinity, N-V) :-
put_attr(V, name, N),
put_attr(V, dist, Infinity).
init_adjs(Ps, d(X, Y, D)) :-
ord_memberchk(X-Xv, Ps),
ord_memberchk(Y-Yv, Ps),
adj_add(Xv, Yv, D),
adj_add(Yv, Xv, D).
adj_add(X, Y, D) :-
( get_attr(X, adjs, L)
-> put_attr(X, adjs, [Y-D|L])
; put_attr(X, adjs, [Y-D])
).
main_loop([]).
main_loop([Q|Qs]) :-
smallest_distance(Qs, Q, U, Qn),
put_attr(U, assigned, true),
get_attr(U, adjs, As),
update_neighbours(As, U),
main_loop(Qn).
smallest_distance([A|Qs], C, M, [T|Qn]) :-
get_attr(A, dist, Av),
get_attr(C, dist, Cv),
( Av < Cv
-> (N,T) = (A,C)
; (N,T) = (C,A)
),
!, smallest_distance(Qs, N, M, Qn).
smallest_distance([], U, U, []).
update_neighbours([V-Duv|Vs], U) :-
( get_attr(V, assigned, true)
-> true
; get_attr(U, dist, Du),
get_attr(V, dist, Dv),
Alt is Du + Duv,
( Alt < Dv
-> put_attr(V, dist, Alt),
put_attr(V, previous, U)
; true
)
),
update_neighbours(Vs, U).
update_neighbours([], _).
:- begin_tests(dijkstra_av).
test(1) :-
nl,
time(dijkstra_av([d(a,b,1),d(b,c,1),d(c,d,1),d(a,d,2)], a, L)),
maplist(writeln, L).
test(2) :-
open('salesman.pl', read, F),
readf(F, L),
close(F),
nl,
dijkstra_av(L, penzance, R),
maplist(writeln, R).
readf(F, [d(X,Y,D)|R]) :-
read(F, dist(X,Y,D)), !, readf(F, R).
readf(_, []).
:- end_tests(dijkstra_av).
说实话,我更喜欢你在问题中链接的代码。有一个显而易见的优化点,tiny_distance / 4现在使用哑线性扫描,使用rbtree运行时应该更好。但必须谨慎处理归因变量。
时间/ 1显然有所改善
% 2,278 inferences, 0,003 CPU in 0,003 seconds (97% CPU, 747050 Lips)
s(aberdeen,682,[penzance,exeter,bristol,birmingham,manchester,carlisle,edinburgh,aberdeen])
....
但图表对于任何明确的断言而言都太小了。如果此代码段减少了您的程序所需的时间,请告知我们。
文件 salesman.pl 包含dist / 3事实,它是从问题中的链接逐字记录的。