以下是示例数据:
myd <- data.frame (matrix (sample (c("AB", "BB", "AA"), 100*100,
replace = T), ncol = 100))
variablenames= paste (rep (paste ("MR.", 1:10,sep = ""),
each = 10), 1:100, sep = ".")
names(myd) <- variablenames
每个变量都有一个组,这里我们有十个组。因此,此数据框中每个变量的组索引如下:
group <- rep(1:10, each = 10)
因此变量名称和组
data.frame (group, variablenames)
group variablenames
1 1 MR.1.1
2 1 MR.1.2
3 1 MR.1.3
4 1 MR.1.4
5 1 MR.1.5
6 1 MR.1.6
7 1 MR.1.7
8 1 MR.1.8
9 1 MR.1.9
10 1 MR.1.10
11 2 MR.2.11
<<<<<<<<<<<<<<<<<<<<<<<<
100 10 MR.10.100
每个组意味着以下步骤可以单独应用于变量组。
我有更长的工作功能以下是简短的例子:
在时间考虑两个变量的函数
myfun <- function (x1, x2) {
out <- NULL
out <- paste(x1, x2, sep=":")
# for other steps to be performed here
return (out)
}
# group 1
myfun (myd[,1], myd[,2]); myfun (myd[,3], myd[,4]); myfun (myd[,5], myd[,6]);
myfun (myd[,7], myd[,8]); myfun (myd[,9], myd[,10]);
# group 2
myfun (myd[,11], myd[,12]); myfun (myd[,13], myd[,14]); .......so on to group 10 ;
这样我需要走变量1:10(即在第一组中执行上述动作),然后是11:20(第二组)。在这种情况下,该组无关紧要。每个组中的变量数量可以被一部分(2)采用(考虑)的变量数量(10)整除。
但是在下面的示例中,一次采用3个变量 - 每组中的总变量数(3),10/3,最后剩下一个变量。
在时间上考虑三个变量的函数。
myfun <- function (x1, x2, x3) {
out <- NULL
out <- paste(x1, x2, x3, sep=":")
# for other steps to be performed here
return (out)
}
# for group 1
myfun (myd[,1], myd[,2], myd[,3])
myfun (myd[,4], myd[,5], myd[,6])
myfun (myd[,7], myd[,8], myd[,9])
# As there one variable left before proceedomg to second group, the final group will
have 1 extra variable
myfun (myd[,7], myd[,8], myd[,9],myd[,10] )
# for group 2
myfun (myd[,11], myd[,12], myd[,13])
# and to the end all groups and to end of the file.
我想通过用户定义的n个时间变量的变量来循环这个过程,其中n可以是1到每个组中的最大变量数。
编辑:只是插图来显示流程(例如,只有第1组和第2组演示):
答案 0 :(得分:4)
创建一个功能,将您的数据分成适当的列表,并将您想要的任何功能应用到列表中。
此功能将创建第二个分组变量。 (您的问题中提供了第一个分组变量(group
);如果您更改了该值,则还应在下面的函数中更改DIM
。)
myfun = function(LENGTH, DIM = 10) {
PATTERN = rep(1:(DIM %/% LENGTH), each=LENGTH)
c(PATTERN, rep(max(PATTERN), DIM %% LENGTH))
}
以下是我们将分割myd
的群组。在此示例中,我们将myd
首先拆分为10列组,并将每个组拆分为3列组,最后一组除外,它将包含4列(3 + 3 + 4 = 10)。 / p>
注意:要更改您要分组的列数,例如,一次按两个变量分组,请更改
group2 = rep(myfun(3), length.out=100)
到group2 = rep(myfun(2), length.out=100)
。
group <- rep(1:10, each = 10)
# CHANGE THE FOLLOWING LINE ACCORDING
# TO THE NUMBER OF GROUPS THAT YOU WANT
group2 = rep(myfun(3), length.out=100)
这是分裂过程。我们首先按名称拆分,然后将这些名称与myd
匹配,以创建data.frames
列表。
# Extract group names for matching purposes
temp = split(names(myd), list(group, group2))
# Match the names to myd
temp = lapply(1:length(temp),
function(x) myd[, which(names(myd) %in% temp[[x]])])
# Extract the names from the list for future reference
NAMES = lapply(temp, function(x) paste(names(x), collapse="_"))
现在我们有一个列表,我们可以做很多有趣的事情。您希望将列粘贴在一起,用冒号分隔。这是你如何做到的。
# Do what you want with the list
# For example, to paste the columns together:
FINAL = lapply(temp, function(x) apply(x, 1, paste, collapse=":"))
names(FINAL) = NAMES
以下是输出示例:
lapply(FINAL, function(x) head(x, 5))
# $MR.1.1_MR.1.2_MR.1.3
# [1] "AA:AB:AB" "AB:BB:AA" "BB:AB:AA" "BB:AA:AB" "AA:AA:AA"
#
# $MR.2.11_MR.2.12_MR.2.13
# [1] "BB:AA:AB" "BB:AB:BB" "BB:AA:AA" "AB:BB:AA" "BB:BB:AA"
#
# $MR.3.21_MR.3.22_MR.3.23
# [1] "AA:AB:BB" "BB:AA:AA" "AA:AB:BB" "AB:AA:AA" "AB:BB:BB"
#
# <<<<<<<------SNIP------>>>>>>>>
#
# $MR.1.4_MR.1.5_MR.1.6
# [1] "AB:BB:AA" "BB:BB:BB" "AA:AA:AA" "BB:BB:AB" "AB:AA:AA"
#
# $MR.2.14_MR.2.15_MR.2.16
# [1] "AA:BB:AB" "BB:BB:BB" "BB:BB:AB" "AA:BB:AB" "BB:BB:BB"
#
# $MR.3.24_MR.3.25_MR.3.26
# [1] "AA:AB:BB" "BB:AA:BB" "BB:AB:BB" "AA:AB:AA" "AB:AA:AA"
#
# <<<<<<<------SNIP------>>>>>>>>
#
# $MR.1.7_MR.1.8_MR.1.9_MR.1.10
# [1] "AB:AB:AA:AB" "AB:AA:BB:AA" "BB:BB:AA:AA" "AB:BB:AB:AA" "AB:BB:AB:BB"
#
# $MR.2.17_MR.2.18_MR.2.19_MR.2.20
# [1] "AB:AB:BB:BB" "AB:AB:BB:BB" "AB:AA:BB:BB" "AA:AA:AB:AA" "AB:AB:AB:AB"
#
# $MR.3.27_MR.3.28_MR.3.29_MR.3.30
# [1] "BB:BB:AB:BB" "BB:BB:AA:AA" "AA:BB:AB:AA" "AA:BB:AB:AA" "AA:AB:AA:BB"
#
# $MR.4.37_MR.4.38_MR.4.39_MR.4.40
# [1] "BB:BB:AB:AA" "AA:BB:AA:BB" "AA:AA:AA:AB" "AB:AA:BB:AB" "BB:BB:BB:BB"
#
# $MR.5.47_MR.5.48_MR.5.49_MR.5.50
# [1] "AB:AA:AA:AB" "AB:AA:BB:AA" "AB:BB:AA:AA" "AB:BB:BB:BB" "BB:AA:AB:AA"
#
# $MR.6.57_MR.6.58_MR.6.59_MR.6.60
# [1] "BB:BB:AB:AA" "BB:AB:BB:AA" "AA:AB:AB:BB" "BB:AB:AA:AB" "AB:AA:AB:BB"
#
# $MR.7.67_MR.7.68_MR.7.69_MR.7.70
# [1] "BB:AB:BB:AA" "BB:AB:BB:AA" "BB:AB:BB:AB" "AB:AA:AA:AA" "AA:AA:AA:AB"
#
# $MR.8.77_MR.8.78_MR.8.79_MR.8.80
# [1] "AA:AB:AA:AB" "AB:AA:AB:BB" "BB:BB:AA:AB" "AB:BB:BB:BB" "AB:AA:BB:AB"
#
# $MR.9.87_MR.9.88_MR.9.89_MR.9.90
# [1] "AA:BB:AB:AA" "AA:AB:BB:BB" "AA:BB:AA:BB" "AB:AB:AA:BB" "AB:AA:AB:BB"
#
# $MR.10.97_MR.10.98_MR.10.99_MR.10.100
# [1] "AB:AA:BB:AB" "AB:AA:AB:BB" "BB:AB:AA:AA" "BB:BB:AA:AA" "AB:AB:BB:AB"
答案 1 :(得分:0)
我建议重新编码myfun以获取矩阵并使用plotrix包中的pasteCols。
library(plotrix)
myfun = function(x){
out = pasteCols(t(x), sep = ":")
# some code
return(out)
}
然后,非常简单:对于每个组,使用模数和整数除法计算调用myfun时要使用的第一列和最后一列的索引:
rubiques_solution = function(group, myd, num_to_group){
# loop over groups
for(g in unique(group)){
var_index = which(group == g)
num_var = length(var_index)
# test to make sure num_to_group is smaller than the number of variable
if(num_var < num_to_group){
stop("num_to_group > number of variable in at least one group")
}
# number of calls to myfun
num_calls = num_var %/% num_to_group
# the idea here is that we create the first and last column
# in which we are interested for each call
first = seq(from = var_index[1], by = num_to_group, length = num_calls)
last = first + num_to_group -1
# the last call will contain possibly more varialbe, we adjust here:
last[length(last)] = last[length(last)] + (num_var %% num_to_group)
for(i in num_calls){
# maybe do something with the return value of myfun ?
myfun(myd[,first[i]:last[i]])
}
}
}
group = rep(1:10, each = 10) # same than yours
myd = data.frame (matrix (sample (c("AB", "BB", "AA"), 100*100, replace = T), ncol = 100)) # same than yours
num_to_group = 2 # this is your first example
rubiques_solution(group, myd, num_to_group)
希望我能正确理解这个问题。