我的pandas Series
对象中填充了十进制数字dtype Decimal。我想使用新的pandas 0.8函数重新采样十进制时间序列,如下所示:
resampled = ts.resample('D', how = 'mean')
尝试这个时,我得到了一个" GroupByError:没有数字类型来聚合"错误。我假设问题是np.mean用于internaly重新采样值,np.mean期望浮点数而不是Decimals。
感谢这个论坛的帮助,我设法使用groupBy和apply函数解决了类似的问题,但我也想使用酷重采样功能。
How use the mean method on a pandas TimeSeries with Decimal type values?
知道如何解决这个问题吗?
以下是创建错误的完整ipython会话:
In [37]: from decimal import Decimal
In [38]: from pandas import *
In [39]: rng = date_range('1.1.2012',periods=48, freq='H')
In [40]: rnd = np.random.randn(len(rng))
In [41]: rnd_dec = [Decimal(x) for x in rnd]
In [42]: ts = Series(rnd_dec, index=rng)
In [43]: ts[0:3]
Out[43]:
2012-01-01 00:00:00 -0.1020591335576267189022559023214853368699550628
2012-01-01 01:00:00 0.99245713975437366283216533702216111123561859130
2012-01-01 02:00:00 1.80080710727195758558139004890108481049537658691
Freq: H
In [44]: type(ts[0])
Out[44]: decimal.Decimal
In [45]: ts.resample('D', how = 'mean')
---------------------------------------------------------------------------
GroupByError Traceback (most recent call last)
C:\Users\THM\Documents\Python\<ipython-input-45-09c898403ddd> in <module>()
----> 1 ts.resample('D', how = 'mean')
C:\Python27\lib\site-packages\pandas\core\generic.pyc in resample(self, rule, how, axis, fill_method, closed, label, convention, kind, loffset, l
imit, base)
187 fill_method=fill_method, convention=convention,
188 limit=limit, base=base)
--> 189 return sampler.resample(self)
190
191 def first(self, offset):
C:\Python27\lib\site-packages\pandas\tseries\resample.pyc in resample(self, obj)
65
66 if isinstance(axis, DatetimeIndex):
---> 67 rs = self._resample_timestamps(obj)
68 elif isinstance(axis, PeriodIndex):
69 offset = to_offset(self.freq)
C:\Python27\lib\site-packages\pandas\tseries\resample.pyc in _resample_timestamps(self, obj)
184 if len(grouper.binlabels) < len(axlabels) or self.how is not None:
185 grouped = obj.groupby(grouper, axis=self.axis)
--> 186 result = grouped.aggregate(self._agg_method)
187 else:
188 # upsampling shortcut
C:\Python27\lib\site-packages\pandas\core\groupby.pyc in aggregate(self, func_or_funcs, *args, **kwargs)
1215 """
1216 if isinstance(func_or_funcs, basestring):
-> 1217 return getattr(self, func_or_funcs)(*args, **kwargs)
1218
1219 if hasattr(func_or_funcs,'__iter__'):
C:\Python27\lib\site-packages\pandas\core\groupby.pyc in mean(self)
290 """
291 try:
--> 292 return self._cython_agg_general('mean')
293 except GroupByError:
294 raise
C:\Python27\lib\site-packages\pandas\core\groupby.pyc in _cython_agg_general(self, how)
376
377 if len(output) == 0:
--> 378 raise GroupByError('No numeric types to aggregate')
379
380 return self._wrap_aggregated_output(output, names)
GroupByError: No numeric types to aggregate
感谢任何帮助。 谢谢, 托马斯
答案 0 :(得分:7)
我自己找到了答案。可以为resample的'how'参数提供一个函数:
f = lambda x: Decimal(np.mean(x))
ts.resample('D', how = f)
答案 1 :(得分:0)
我在DataFrame中收到对象类型列的错误。我使用
解决了这个问题
df.resample('D', method='ffill', how=lambda c: c[-1])