LINQ中的条件组合和

时间:2012-07-31 11:09:01

标签: linq linq-to-sql linq-to-entities

我有这个表,我通过linq-to-entities访问:

  • 金额
  • 类型(1或2)

我在同一天和同一类型的行中有很多行,我需要按月汇总它们的数量。这很简单:

from r in rows
group r by new { r.Date.Year, r.Date.Month }
into g
select
    new
        {
            Date = new DateTime(g.Key.Year, g.Key.Month, 1),
            Hours = g.Sum(a => a.Amount)
        };

但是,我有一个特殊的规则,我需要在同一个LINQ中实现,我想要一些帮助:

如果某一天有任何类型2,那么那天只应该是类型2的总和。否则它应该在类型1上总结。

请注意,类型1和类型2之间的区别是每天,总和是每月。

更新 当我处理大量数据时,我需要在一次数据库调用中获取所有数据,我无法将其加载到内存中并在那里进行管理。

4 个答案:

答案 0 :(得分:1)

这对你来说怎么样?

var query =
    from r in rows.ToArray()
    group r by new { r.Date.Year, r.Date.Month } into g
    let lookup = g.ToLookup(x => x.Type, x => x.Amount)
    let Hours = lookup[2].Any() ? lookup[2].Sum() : lookup[1].Sum()
    select new
    {
        Date = new DateTime(g.Key.Year, g.Key.Month, 1),
        Hours,
    };

请注意.ToArray(),因为您需要将数据存入内存才能使其正常工作。

我认为Type是一个整数,其值为12


进一步的想法我不认为可以在单个查询中进行这种分组而不将其带入内存。

所以最好的选择是尽可能减少内存。如果这不起作用,那么你需要将其分解为几个查询。

var query1 =
    from r in rows
    group r.Amount by new
    {
        r.Date.Year,
        r.Date.Month,
        r.Type,
    } into g
    select new
    {
        g.Key.Year,
        g.Key.Month,
        g.Key.Type,
        Amount = g.Sum(),
    };

var query2 =
    from r in query1.ToArray()
    group r by new
    {
        r.Year,
        r.Month,
    } into g
    let lookup = g.ToLookup(x => x.Type, x => x.Amount)
    let Hours = lookup[2].Any() ? lookup[2].Sum() : lookup[1].Sum()
    select new
    {
        Date = new DateTime(g.Key.Year, g.Key.Month, 1),
        Hours,
    };

这是一种可能吗?

答案 1 :(得分:1)

好的,我想我已经搞清楚了。我已经用一些数据对它进行了测试,这样可行。

Testdata和SQL testquery:

DECLARE @table TABLE (
    Datum DATETIME,
    Amount INT,
    [Type] INT
)

INSERT INTO @table (Datum, Amount, [Type]) values
('2012-01-01',200,1),
('2012-01-01',100,2),
('2012-01-02',500,1),
('2012-03-01',200,1),
('2012-03-01',100,1),
('2012-03-02',500,2)

SELECT MONTH(Datum), YEAR(Datum), COUNT(*), SUM(Amount)
FROM @table t
INNER JOIN (
    SELECT DAY (Datum) AS _day, MONTH(Datum) AS _month, YEAR(Datum) _year,
    MAX([Type]) as _type
    FROM @table
    GROUP BY DAY (Datum), MONTH(Datum), YEAR(Datum)
) X
ON _month = MONTH (T.Datum)
AND _year = YEAR(T.Datum)
AND _day = DAY(T.Datum)
AND _type = T.[Type]
GROUP BY MONTH(Datum), YEAR(Datum)

结果:

(No column name)    (No column name)    (No column name)    (No column name)
1   2012    2   600
3   2012    3   800

翻译的LINQ查询,使用L2S和带有测试数据的“真实”测试表进行测试。

using (DataClasses1DataContext ctx = new DataClasses1DataContext()) {
    var rows = ctx.Tests;

    var query = rows
        .Join(
            rows.GroupBy(rr =>
                new { rr.Datum.Day, rr.Datum.Month, rr.Datum.Year },
                (key, data) => new { Year = key.Year, Month = key.Month, Day = key.Day, MaxType = data.Select(xxx => xxx.Type).Max() }
            ),
            rr => new { Day = rr.Datum.Day, Month = rr.Datum.Month, Year = rr.Datum.Year, Type = rr.Type },
            rr => new { Day = rr.Day, Month = rr.Month, Year = rr.Year, Type = rr.MaxType },
            (r, r1) => r

        )
        .GroupBy(r =>
            new { Year = r.Datum.Year, Month = r.Datum.Month },
            (key, data) => new { Year = key.Year, Month = key.Month, Amount = data.Select(xx => xx.Amount).Sum() }
        )
        .ToList();
}

返回相同的结果。

并且,为了它的乐趣,L2S从Linq查询生成的SQL查询。

SELECT [t7].[value] AS [Year], [t7].[value2] AS [Month], (
    SELECT SUM([t8].[Amount])
    FROM [dbo].[Test] AS [t8]
    INNER JOIN (
        SELECT [t11].[value3], [t11].[value2], [t11].[value], (
            SELECT MAX([t12].[Type])
            FROM [dbo].[Test] AS [t12]
            WHERE ((([t11].[value] IS NULL) AND (DATEPART(Day, [t12].[Datum]) IS NULL)) OR (([t11].[value] IS NOT NULL) AND (DATEPART(Day, [t12].[Datum]) IS NOT NULL) AND ((([t11].[value] IS NULL) AND (DATEPART(Day, [t12].[Datum]) IS NULL)) OR (([t11].[value] IS NOT NULL) AND (DATEPART(Day, [t12].[Datum]) IS NOT NULL) AND ([t11].[value] = DATEPART(Day, [t12].[Datum])))))) AND ((([t11].[value2] IS NULL) AND (DATEPART(Month, [t12].[Datum]) IS NULL)) OR (([t11].[value2] IS NOT NULL) AND (DATEPART(Month, [t12].[Datum]) IS NOT NULL) AND ((([t11].[value2] IS NULL) AND (DATEPART(Month, [t12].[Datum]) IS NULL)) OR (([t11].[value2] IS NOT NULL) AND (DATEPART(Month, [t12].[Datum]) IS NOT NULL) AND ([t11].[value2] = DATEPART(Month, [t12].[Datum])))))) AND ((([t11].[value3] IS NULL) AND (DATEPART(Year, [t12].[Datum]) IS NULL)) OR (([t11].[value3] IS NOT NULL) AND (DATEPART(Year, [t12].[Datum]) IS NOT NULL) AND ((([t11].[value3] IS NULL) AND (DATEPART(Year, [t12].[Datum]) IS NULL)) OR (([t11].[value3] IS NOT NULL) AND (DATEPART(Year, [t12].[Datum]) IS NOT NULL) AND ([t11].[value3] = DATEPART(Year, [t12].[Datum]))))))
            ) AS [value4]
        FROM (
            SELECT [t10].[value], [t10].[value2], [t10].[value3]
            FROM (
                SELECT DATEPART(Day, [t9].[Datum]) AS [value], DATEPART(Month, [t9].[Datum]) AS [value2], DATEPART(Year, [t9].[Datum]) AS [value3]
                FROM [dbo].[Test] AS [t9]
                ) AS [t10]
            GROUP BY [t10].[value], [t10].[value2], [t10].[value3]
            ) AS [t11]
        ) AS [t13] ON (DATEPART(Day, [t8].[Datum]) = [t13].[value]) AND (DATEPART(Month, [t8].[Datum]) = [t13].[value2]) AND (DATEPART(Year, [t8].[Datum]) = [t13].[value3]) AND ([t8].[Type] = [t13].[value4])
    WHERE ((([t7].[value] IS NULL) AND (DATEPART(Year, [t8].[Datum]) IS NULL)) OR (([t7].[value] IS NOT NULL) AND (DATEPART(Year, [t8].[Datum]) IS NOT NULL) AND ((([t7].[value] IS NULL) AND (DATEPART(Year, [t8].[Datum]) IS NULL)) OR (([t7].[value] IS NOT NULL) AND (DATEPART(Year, [t8].[Datum]) IS NOT NULL) AND ([t7].[value] = DATEPART(Year, [t8].[Datum])))))) AND ((([t7].[value2] IS NULL) AND (DATEPART(Month, [t8].[Datum]) IS NULL)) OR (([t7].[value2] IS NOT NULL) AND (DATEPART(Month, [t8].[Datum]) IS NOT NULL) AND ((([t7].[value2] IS NULL) AND (DATEPART(Month, [t8].[Datum]) IS NULL)) OR (([t7].[value2] IS NOT NULL) AND (DATEPART(Month, [t8].[Datum]) IS NOT NULL) AND ([t7].[value2] = DATEPART(Month, [t8].[Datum]))))))
    ) AS [Amount]
FROM (
    SELECT [t6].[value], [t6].[value2]
    FROM (
        SELECT DATEPART(Year, [t0].[Datum]) AS [value], DATEPART(Month, [t0].[Datum]) AS [value2]
        FROM [dbo].[Test] AS [t0]
        INNER JOIN (
            SELECT [t3].[value3], [t3].[value2], [t3].[value], (
                SELECT MAX([t4].[Type])
                FROM [dbo].[Test] AS [t4]
                WHERE ((([t3].[value] IS NULL) AND (DATEPART(Day, [t4].[Datum]) IS NULL)) OR (([t3].[value] IS NOT NULL) AND (DATEPART(Day, [t4].[Datum]) IS NOT NULL) AND ((([t3].[value] IS NULL) AND (DATEPART(Day, [t4].[Datum]) IS NULL)) OR (([t3].[value] IS NOT NULL) AND (DATEPART(Day, [t4].[Datum]) IS NOT NULL) AND ([t3].[value] = DATEPART(Day, [t4].[Datum])))))) AND ((([t3].[value2] IS NULL) AND (DATEPART(Month, [t4].[Datum]) IS NULL)) OR (([t3].[value2] IS NOT NULL) AND (DATEPART(Month, [t4].[Datum]) IS NOT NULL) AND ((([t3].[value2] IS NULL) AND (DATEPART(Month, [t4].[Datum]) IS NULL)) OR (([t3].[value2] IS NOT NULL) AND (DATEPART(Month, [t4].[Datum]) IS NOT NULL) AND ([t3].[value2] = DATEPART(Month, [t4].[Datum])))))) AND ((([t3].[value3] IS NULL) AND (DATEPART(Year, [t4].[Datum]) IS NULL)) OR (([t3].[value3] IS NOT NULL) AND (DATEPART(Year, [t4].[Datum]) IS NOT NULL) AND ((([t3].[value3] IS NULL) AND (DATEPART(Year, [t4].[Datum]) IS NULL)) OR (([t3].[value3] IS NOT NULL) AND (DATEPART(Year, [t4].[Datum]) IS NOT NULL) AND ([t3].[value3] = DATEPART(Year, [t4].[Datum]))))))
                ) AS [value4]
            FROM (
                SELECT [t2].[value], [t2].[value2], [t2].[value3]
                FROM (
                    SELECT DATEPART(Day, [t1].[Datum]) AS [value], DATEPART(Month, [t1].[Datum]) AS [value2], DATEPART(Year, [t1].[Datum]) AS [value3]
                    FROM [dbo].[Test] AS [t1]
                    ) AS [t2]
                GROUP BY [t2].[value], [t2].[value2], [t2].[value3]
                ) AS [t3]
            ) AS [t5] ON (DATEPART(Day, [t0].[Datum]) = [t5].[value]) AND (DATEPART(Month, [t0].[Datum]) = [t5].[value2]) AND (DATEPART(Year, [t0].[Datum]) = [t5].[value3]) AND ([t0].[Type] = [t5].[value4])
        ) AS [t6]
    GROUP BY [t6].[value], [t6].[value2]
    ) AS [t7]

我不知道这个SQL的效率如何,你将不得不尝试它。

答案 2 :(得分:1)

rows
    .GroupBy(
        r => new { r.Date.Year, r.Date.Month, r.Date.Day, r.Type },
        (r, rr) => new { r.Year, r.Month, r.Day, r.Type, Amount = rr.Sum(rrr => rrr.Amount) })
    .GroupBy(
        r => new { r.Year, r.Month, r.Day },
        (r, rr) => new { r.Year, r.Month, r.Day, Amount = rr.OrderByDescending(rrr => rrr.Type).Select(rrr => rrr.Amount).First() })
    .GroupBy(
        r => new { r.Year, r.Month },
        (r, rr) => new { r.Year, r.Month, Amount = rr.Sum(rrr => rrr.Amount) })

这个背后的比例非常简单:要求“如果至少有一个类型2记录,只计算类型2记录”可以通过简单地按类型分组记录来实现(当然,几天之内) )。它为什么有效?因为我们将所有记录分成两组,类型2(如果至少有一个类型2记录应该使用),类型1(实际上意味着“没有类型2存在时的所有记录”)。第二部分(选择总和)甚至更简单:我们只是通过降序类型(即类型2的总和,类型1的总和)对组(在一天内)进行排序,并取第一个,如果存在则给出类型2,否则键入1。

坦率地说,这是一种每个人都讨厌的“智能代码”,因为没有人能够一眼就看出它是如何工作的。

答案 3 :(得分:0)

这个怎么样?

from r in rows
group r by new { r.Date.Year, r.Date.Month }
into g
let type2Days = g.Where( a => a.Type == 2 ).Select( a => a.Date.Day ).Distinct()
let filtered = g.Where( a => a.Type == 2 || type2Days.Contains(a.Date.Day) == false )
select
    new
        {
            Date = new DateTime(g.Key.Year, g.Key.Month, 1),
            Hours = filtered.Sum(a => a.Amount)
        };