我只是想更好地理解使用多个映射器和reducer。我想尝试使用一个简单的hadoop mapreduce字数计数作业。我想为这个wordcount作业运行两个mapper和两个reducer。就是那个我需要手动配置配置文件,或者只是对WordCount.java文件进行更改。
我在单个节点上运行此作业。我正在运行此作业
$ hadoop jar job.jar输入输出
我已经开始了
$ hadoop namenode -format
$ hadoop namenode
$ hadoop datanode
sbin $ ./yarn-daemon.sh启动resourcemanager sbin $ ./yarn-daemon.sh start resourcemanager
我正在运行hadoop-2.0.0-cdh4.0.0
我的WordCount.java文件是
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.rg.apache.hadoop.fs.Path;
import oapache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
private static final Log LOG = LogFactory.getLog(WordCount.class);
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
//printKeyAndValues(key, values);
for (IntWritable val : values) {
sum += val.get();
LOG.info("val = " + val.get());
}
LOG.info("sum = " + sum + " key = " + key);
result.set(sum);
context.write(key, result);
//System.err.println(String.format("[reduce] word: (%s), count: (%d)", key, result.get()));
}
// a little method to print debug output
private void printKeyAndValues(Text key, Iterable<IntWritable> values)
{
StringBuilder sb = new StringBuilder();
for (IntWritable val : values)
{
sb.append(val.get() + ", ");
}
System.err.println(String.format("[reduce] key: (%s), value: (%s)", key, sb.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
你们中的任何人现在可以帮我运行两个映射器和减少器吗?
答案 0 :(得分:5)
Gladnick:如果您打算使用默认的 TextInputFormat ,那么输入文件数量上将至少有多个映射器(或者更多,具体取决于文件大小)。所以只需将2个文件放入输入目录,这样就可以运行2个映射器。 (建议此解决方案,因为您计划将其作为测试用例运行)。
既然您已经要求2个减速器,那么您需要做的就是提交作业的主要原因是 job.setNumReduceTasks(2)。
之后,只需准备一个应用程序的jar并在 hadoop伪群集中运行它。
如果您需要指定哪个单词去哪个reducer,您可以在Partitioner类中指定。
Configuration configuration = new Configuration();
// create a configuration object that provides access to various
// configuration parameters
Job job = new Job(configuration, "Wordcount-Vowels & Consonants");
// create the job object and set job name as Wordcount-Vowels &
// Consonants
job.setJarByClass(WordCount.class);
// set the main class
job.setNumReduceTasks(2);
// set the number of reduce tasks required
job.setMapperClass(WordCountMapper.class);
// set the map class for the job
job.setCombinerClass(WordCountCombiner.class);
// set the combiner class for the job
job.setPartitionerClass(VowelConsonantPartitioner.class);
// set the partitioner class for the job
job.setReducerClass(WordCountReducer.class);
// set the reduce class for the job
job.setOutputKeyClass(Text.class);
// set the output type of key (the word) expected from the job, Text
// analogous to String
job.setOutputValueClass(IntWritable.class);
// set the output type of value (the count) expected from the job,
// IntWritable analogous to int
FileInputFormat.addInputPath(job, new Path(args[0]));
// set the input directory for fetching the input files
FileOutputFormat.setOutputPath(job, new Path(args[1]));
这应该是主程序的结构。如果需要,您可以包括组合器和分区器。
答案 1 :(得分:2)
对于映射器设置
mapred.max.split.size
是文件大小的一半。
对于reducers,将它们明确地设置为2
mapred.reduce.tasks=2