最近,我在 Haskell 中实施了一个天真的DPLL Sat Solver,改编自John Harrison的Handbook of Practical Logic and Automated Reasoning。
DPLL是各种回溯搜索,因此我想尝试使用Logic monad中的Oleg Kiselyov et al。但是,我真的不明白我需要改变什么。
这是我得到的代码。
{-# LANGUAGE MonadComprehensions #-}
module DPLL where
import Prelude hiding (foldr)
import Control.Monad (join,mplus,mzero,guard,msum)
import Data.Set.Monad (Set, (\\), member, partition, toList, foldr)
import Data.Maybe (listToMaybe)
-- "Literal" propositions are either true or false
data Lit p = T p | F p deriving (Show,Ord,Eq)
neg :: Lit p -> Lit p
neg (T p) = F p
neg (F p) = T p
-- We model DPLL like a sequent calculus
-- LHS: a set of assumptions / partial model (set of literals)
-- RHS: a set of goals
data Sequent p = (Set (Lit p)) :|-: Set (Set (Lit p)) deriving Show
{- --------------------------- Goal Reduction Rules -------------------------- -}
{- "Unit Propogation" takes literal x and A :|-: B to A,x :|-: B',
- where B' has no clauses with x,
- and all instances of -x are deleted -}
unitP :: Ord p => Lit p -> Sequent p -> Sequent p
unitP x (assms :|-: clauses) = (assms' :|-: clauses')
where
assms' = (return x) `mplus` assms
clauses_ = [ c | c <- clauses, not (x `member` c) ]
clauses' = [ [ u | u <- c, u /= neg x] | c <- clauses_ ]
{- Find literals that only occur positively or negatively
- and perform unit propogation on these -}
pureRule :: Ord p => Sequent p -> Maybe (Sequent p)
pureRule sequent@(_ :|-: clauses) =
let
sign (T _) = True
sign (F _) = False
-- Partition the positive and negative formulae
(positive,negative) = partition sign (join clauses)
-- Compute the literals that are purely positive/negative
purePositive = positive \\ (fmap neg negative)
pureNegative = negative \\ (fmap neg positive)
pure = purePositive `mplus` pureNegative
-- Unit Propagate the pure literals
sequent' = foldr unitP sequent pure
in if (pure /= mzero) then Just sequent'
else Nothing
{- Add any singleton clauses to the assumptions
- and simplify the clauses -}
oneRule :: Ord p => Sequent p -> Maybe (Sequent p)
oneRule sequent@(_ :|-: clauses) =
do
-- Extract literals that occur alone and choose one
let singletons = join [ c | c <- clauses, isSingle c ]
x <- (listToMaybe . toList) singletons
-- Return the new simplified problem
return $ unitP x sequent
where
isSingle c = case (toList c) of { [a] -> True ; _ -> False }
{- ------------------------------ DPLL Algorithm ----------------------------- -}
dpll :: Ord p => Set (Set (Lit p)) -> Maybe (Set (Lit p))
dpll goalClauses = dpll' $ mzero :|-: goalClauses
where
dpll' sequent@(assms :|-: clauses) = do
-- Fail early if falsum is a subgoal
guard $ not (mzero `member` clauses)
case (toList . join) $ clauses of
-- Return the assumptions if there are no subgoals left
[] -> return assms
-- Otherwise try various tactics for resolving goals
x:_ -> dpll' =<< msum [ pureRule sequent
, oneRule sequent
, return $ unitP x sequent
, return $ unitP (neg x) sequent ]
答案 0 :(得分:17)
好的,将您的代码更改为使用Logic
,结果完全是微不足道的。我仔细研究了所有内容以使用普通Set
函数而不是Set
monad,因为你并没有真正以统一的方式单独使用Set
,当然也不是为了回溯逻辑。 monad理解也更清楚地写成地图和过滤器等。这不需要发生,但它确实帮助我理解正在发生的事情,并且它确实表明用于回溯的一个真正剩余的monad只是Maybe
。
在任何情况下,您都可以概括pureRule
,oneRule
和dpll
的类型签名,不仅可以Maybe
,还可以m
。使用约束MonadPlus m =>
。
然后,在pureRule
中,您的类型将不匹配,因为您明确构造了Maybe
,所以请稍微更改一下:
in if (pure /= mzero) then Just sequent'
else Nothing
变为
in if (not $ S.null pure) then return sequent' else mzero
在oneRule
中,类似地将listToMaybe
的使用情况更改为显式匹配,以便
x <- (listToMaybe . toList) singletons
变为
case singletons of
x:_ -> return $ unitP x sequent -- Return the new simplified problem
[] -> mzero
而且,在类型签名更改之外,dpll
根本不需要更改!
现在,您的代码通过 Maybe
和 Logic
进行操作!
运行Logic
代码,您可以使用如下函数:
dpllLogic s = observe $ dpll' s
您可以使用observeAll
等来查看更多结果。
供参考,这是完整的工作代码:
{-# LANGUAGE MonadComprehensions #-}
module DPLL where
import Prelude hiding (foldr)
import Control.Monad (join,mplus,mzero,guard,msum)
import Data.Set (Set, (\\), member, partition, toList, foldr)
import qualified Data.Set as S
import Data.Maybe (listToMaybe)
import Control.Monad.Logic
-- "Literal" propositions are either true or false
data Lit p = T p | F p deriving (Show,Ord,Eq)
neg :: Lit p -> Lit p
neg (T p) = F p
neg (F p) = T p
-- We model DPLL like a sequent calculus
-- LHS: a set of assumptions / partial model (set of literals)
-- RHS: a set of goals
data Sequent p = (Set (Lit p)) :|-: Set (Set (Lit p)) --deriving Show
{- --------------------------- Goal Reduction Rules -------------------------- -}
{- "Unit Propogation" takes literal x and A :|-: B to A,x :|-: B',
- where B' has no clauses with x,
- and all instances of -x are deleted -}
unitP :: Ord p => Lit p -> Sequent p -> Sequent p
unitP x (assms :|-: clauses) = (assms' :|-: clauses')
where
assms' = S.insert x assms
clauses_ = S.filter (not . (x `member`)) clauses
clauses' = S.map (S.filter (/= neg x)) clauses_
{- Find literals that only occur positively or negatively
- and perform unit propogation on these -}
pureRule sequent@(_ :|-: clauses) =
let
sign (T _) = True
sign (F _) = False
-- Partition the positive and negative formulae
(positive,negative) = partition sign (S.unions . S.toList $ clauses)
-- Compute the literals that are purely positive/negative
purePositive = positive \\ (S.map neg negative)
pureNegative = negative \\ (S.map neg positive)
pure = purePositive `S.union` pureNegative
-- Unit Propagate the pure literals
sequent' = foldr unitP sequent pure
in if (not $ S.null pure) then return sequent'
else mzero
{- Add any singleton clauses to the assumptions
- and simplify the clauses -}
oneRule sequent@(_ :|-: clauses) =
do
-- Extract literals that occur alone and choose one
let singletons = concatMap toList . filter isSingle $ S.toList clauses
case singletons of
x:_ -> return $ unitP x sequent -- Return the new simplified problem
[] -> mzero
where
isSingle c = case (toList c) of { [a] -> True ; _ -> False }
{- ------------------------------ DPLL Algorithm ----------------------------- -}
dpll goalClauses = dpll' $ S.empty :|-: goalClauses
where
dpll' sequent@(assms :|-: clauses) = do
-- Fail early if falsum is a subgoal
guard $ not (S.empty `member` clauses)
case concatMap S.toList $ S.toList clauses of
-- Return the assumptions if there are no subgoals left
[] -> return assms
-- Otherwise try various tactics for resolving goals
x:_ -> dpll' =<< msum [ pureRule sequent
, oneRule sequent
, return $ unitP x sequent
, return $ unitP (neg x) sequent ]
dpllLogic s = observe $ dpll s
答案 1 :(得分:8)
使用Logic monad是否有任何具体的性能优势?
TL; DR :不是我能找到的; Maybe
似乎优于Logic
,因为它的开销较小。
我决定实施一个简单的基准来检查Logic
与Maybe
的效果。
在我的测试中,我随机构造了5000个带有n
子句的CNF,每个子句包含三个文字。随着条款n
的变化,评估绩效。
在我的代码中,我修改了dpllLogic
,如下所示:
dpllLogic s = listToMaybe $ observeMany 1 $ dpll s
我还测试了使用合理分离修改dpll
,如下所示:
dpll goalClauses = dpll' $ S.empty :|-: goalClauses
where
dpll' sequent@(assms :|-: clauses) = do
-- Fail early if falsum is a subgoal
guard $ not (S.empty `member` clauses)
case concatMap S.toList $ S.toList clauses of
-- Return the assumptions if there are no subgoals left
[] -> return assms
-- Otherwise try various tactics for resolving goals
x:_ -> msum [ pureRule sequent
, oneRule sequent
, return $ unitP x sequent
, return $ unitP (neg x) sequent ]
>>- dpll'
然后,我使用Maybe
,Logic
和Logic
进行了公平分离测试。
以下是此测试的基准测试结果:
正如我们所看到的,Logic
在这种情况下有或没有公平分离没有区别。使用dpll
monad的Maybe
求解似乎在n
中以线性时间运行,而使用Logic
monad则会产生额外的开销。似乎开销导致了高原。
以下是用于生成这些测试的Main.hs
文件。希望重现这些基准的人可能希望查看Haskell's notes on profiling:
module Main where
import DPLL
import System.Environment (getArgs)
import System.Random
import Control.Monad (replicateM)
import Data.Set (fromList)
randLit = do let clauses = [ T p | p <- ['a'..'f'] ]
++ [ F p | p <- ['a'..'f'] ]
r <- randomRIO (0, (length clauses) - 1)
return $ clauses !! r
randClause n = fmap fromList $ replicateM n $ fmap fromList $ replicateM 3 randLit
main = do args <- getArgs
let n = read (args !! 0) :: Int
clauses <- replicateM 5000 $ randClause n
-- To use the Maybe monad
--let satisfiable = filter (/= Nothing) $ map dpll clauses
let satisfiable = filter (/= Nothing) $ map dpllLogic clauses
putStrLn $ (show $ length satisfiable) ++ " satisfiable out of "
++ (show $ length clauses)