我想使用lm()
函数在R中进行线性回归。我的数据是一年一度的时间序列,一年(22年),另一个州(50个州)。我想为每个状态拟合一个回归,以便最后我有一个lm响应的向量。我可以想象为每个状态做循环然后在循环内进行回归并将每个回归的结果添加到向量。但是,这似乎不像R一样。在SAS中我会做一个'by'语句,在SQL中我会做'group by'。 R的做法是什么?
答案 0 :(得分:57)
以下是使用plyr包的方法:
d <- data.frame(
state = rep(c('NY', 'CA'), 10),
year = rep(1:10, 2),
response= rnorm(20)
)
library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df)
lm(response ~ year, data = df))
# Apply coef to each model and return a data frame
ldply(models, coef)
# Print the summary of each model
l_ply(models, summary, .print = TRUE)
答案 1 :(得分:42)
这是使用lme4
包的一种方式。
library(lme4)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
xyplot(response ~ year, groups=state, data=d, type='l')
fits <- lmList(response ~ year | state, data=d)
fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
(Intercept) year
CA -1.34420990 0.17139963
NY 0.00196176 -0.01852429
Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316
答案 2 :(得分:37)
自2009年以来,dplyr
已经发布,实际上提供了一种非常好的方式来进行这种分组,非常类似于SAS。
library(dplyr)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
# state model
# (fctr) (chr)
# 1 CA <S3:lm>
# 2 NY <S3:lm>
fitted_models$model
# [[1]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.06354 0.02677
#
#
# [[2]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.35136 0.09385
要检索系数和Rsquared / p.value,可以使用broom
包。该软件包提供:
三个S3泛型:整洁,总结了一个模型 统计结果,如回归系数; augment,它将列添加到原始数据中,例如 预测,残差和集群分配;和目光,哪个 提供模型级统计信息的一行摘要。
library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
#
# state term estimate std.error statistic p.value
# (fctr) (chr) (dbl) (dbl) (dbl) (dbl)
# 1 CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2 CA year 0.02677048 0.13515755 0.1980687 0.8479318
# 3 NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4 NY year 0.09385309 0.09686043 0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
#
# state r.squared adj.r.squared sigma statistic p.value df
# (fctr) (dbl) (dbl) (dbl) (dbl) (dbl) (int)
# 1 CA 0.004879969 -0.119510035 1.2276294 0.0392312 0.8479318 2
# 2 NY 0.105032068 -0.006838924 0.8797785 0.9388678 0.3609470 2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
# df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
#
# state response year .fitted .se.fit .resid .hat
# (fctr) (dbl) (int) (dbl) (dbl) (dbl) (dbl)
# 1 CA 0.4547765 1 -0.036769875 0.7215439 0.4915464 0.3454545
# 2 CA 0.1217003 2 -0.009999399 0.6119518 0.1316997 0.2484848
# 3 CA -0.6153836 3 0.016771076 0.5146646 -0.6321546 0.1757576
# 4 CA -0.9978060 4 0.043541551 0.4379605 -1.0413476 0.1272727
# 5 CA 2.1385614 5 0.070312027 0.3940486 2.0682494 0.1030303
# 6 CA -0.3924598 6 0.097082502 0.3940486 -0.4895423 0.1030303
# 7 CA -0.5918738 7 0.123852977 0.4379605 -0.7157268 0.1272727
# 8 CA 0.4671346 8 0.150623453 0.5146646 0.3165112 0.1757576
# 9 CA -1.4958726 9 0.177393928 0.6119518 -1.6732666 0.2484848
# 10 CA 1.7481956 10 0.204164404 0.7215439 1.5440312 0.3454545
# 11 NY -0.6285230 1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12 NY 1.0566099 2 -0.163651479 0.4385542 1.2202614 0.2484848
# 13 NY -0.5274693 3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14 NY 0.6097983 4 0.024054706 0.3138637 0.5857436 0.1272727
# 15 NY -1.5511940 5 0.117907799 0.2823942 -1.6691018 0.1030303
# 16 NY 0.7440243 6 0.211760892 0.2823942 0.5322634 0.1030303
# 17 NY 0.1054719 7 0.305613984 0.3138637 -0.2001421 0.1272727
# 18 NY 0.7513057 8 0.399467077 0.3688335 0.3518387 0.1757576
# 19 NY -0.1271655 9 0.493320170 0.4385542 -0.6204857 0.2484848
# 20 NY 1.2154852 10 0.587173262 0.5170932 0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)
答案 3 :(得分:23)
在我看来,混合线性模型是这种数据的更好方法。以下代码给出了固定效应的整体趋势。随机效应表明每个州的趋势与全球趋势有何不同。相关结构考虑了时间自相关。看看Pinheiro&amp; Bates(S和S-Plus中的混合效应模型)。
library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))
答案 4 :(得分:12)
使用data.table
的一个很好的解决方案在@Zach的CrossValidated中发布了here。
我只想补充说,也可以迭代地获得回归系数r ^ 2:
## make fake data
library(data.table)
set.seed(1)
dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))
##calculate the regression coefficient r^2
dat[,summary(lm(y~x))$r.squared,by=grp]
grp V1
1: 1 0.01465726
2: 2 0.02256595
以及summary(lm)
的所有其他输出:
dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
grp r2 f
1: 1 0.01465726 0.714014
2: 2 0.02256595 1.108173
答案 5 :(得分:8)
## make fake data
ngroups <- 2
group <- 1:ngroups
nobs <- 100
dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
head(dta)
#--------------------
group y x
1 1 0.6482007 0.5429575
2 1 -0.4637118 0.7052843
3 1 -0.5129840 0.7312955
4 1 -0.6612649 0.9028034
5 1 -0.5197448 0.1661308
6 1 0.4240346 0.8944253
#------------
## function to extract the results of one model
foo <- function(z) {
## coef and se in a data frame
mr <- data.frame(coef(summary(lm(y~x,data=z))))
## put row names (predictors/indep variables)
mr$predictor <- rownames(mr)
mr
}
## see that it works
foo(subset(dta,group==1))
#=========
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) 0.2176477 0.1919140 1.134090 0.2595235 (Intercept)
x -0.3669890 0.3321875 -1.104765 0.2719666 x
#----------
## one option: use command by
res <- by(dta,dta$group,foo)
res
#=========
dta$group: 1
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) 0.2176477 0.1919140 1.134090 0.2595235 (Intercept)
x -0.3669890 0.3321875 -1.104765 0.2719666 x
------------------------------------------------------------
dta$group: 2
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) -0.04039422 0.1682335 -0.2401081 0.8107480 (Intercept)
x 0.06286456 0.3020321 0.2081387 0.8355526 x
## using package plyr is better
library(plyr)
res <- ddply(dta,"group",foo)
res
#----------
group Estimate Std..Error t.value Pr...t.. predictor
1 1 0.21764767 0.1919140 1.1340897 0.2595235 (Intercept)
2 1 -0.36698898 0.3321875 -1.1047647 0.2719666 x
3 2 -0.04039422 0.1682335 -0.2401081 0.8107480 (Intercept)
4 2 0.06286456 0.3020321 0.2081387 0.8355526 x
答案 6 :(得分:5)
我现在的答案有点迟了,但我正在寻找类似的功能。看起来R中的内置函数'by'也可以轻松地进行分组:
?by包含以下示例,该示例适合每个组并使用sapply提取系数:
require(stats)
## now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,
by(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)
答案 7 :(得分:4)
我认为值得为此问题添加purrr::map
方法。
library(tidyverse)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
d %>%
group_by(state) %>%
nest() %>%
mutate(model = map(data, ~lm(response ~ year, data = .)))
请参阅@Paul Hiemstra的答案,了解有关在这些结果中使用broom
包的更多建议。
答案 8 :(得分:3)
上面的lm()
函数就是一个简单的例子。顺便说一句,我想你的数据库有以下形式的列:
年状态var1 var2 y ...
在我看来,您可以使用以下代码:
require(base)
library(base)
attach(data) # data = your data base
#state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)
答案 9 :(得分:0)
问题似乎是关于如何使用在循环内修改的公式来调用回归函数。
以下是使用钻石数据集的方法:
attach(ggplot2::diamonds)
strCols = names(ggplot2::diamonds)
formula <- list(); model <- list()
for (i in 1:1) {
formula[[i]] = paste0(strCols[7], " ~ ", strCols[7+i])
model[[i]] = glm(formula[[i]])
#then you can plot the results or anything else ...
png(filename = sprintf("diamonds_price=glm(%s).png", strCols[7+i]))
par(mfrow = c(2, 2))
plot(model[[i]])
dev.off()
}