使用data.table
分配给多个列的最佳方法是什么?例如:
f <- function(x) {c("hi", "hello")}
x <- data.table(id = 1:10)
我想做这样的事情(当然这种语法不正确):
x[ , (col1, col2) := f(), by = "id"]
为了扩展它,我可能有许多名称存储在变量中的列(比如col_names
),我想这样做:
x[ , col_names := another_f(), by = "id", with = FALSE]
这样做的正确方法是什么?
答案 0 :(得分:134)
这现在适用于R-Forge的v1.8.3。谢谢你突出它!
x <- data.table(a = 1:3, b = 1:6)
f <- function(x) {list("hi", "hello")}
x[ , c("col1", "col2") := f(), by = a][]
# a b col1 col2
# 1: 1 1 hi hello
# 2: 2 2 hi hello
# 3: 3 3 hi hello
# 4: 1 4 hi hello
# 5: 2 5 hi hello
# 6: 3 6 hi hello
x[ , c("mean", "sum") := list(mean(b), sum(b)), by = a][]
# a b col1 col2 mean sum
# 1: 1 1 hi hello 2.5 5
# 2: 2 2 hi hello 3.5 7
# 3: 3 3 hi hello 4.5 9
# 4: 1 4 hi hello 2.5 5
# 5: 2 5 hi hello 3.5 7
# 6: 3 6 hi hello 4.5 9
mynames = c("Name1", "Longer%")
x[ , (mynames) := list(mean(b) * 4, sum(b) * 3), by = a]
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
x[ , mynames := list(mean(b) * 4, sum(b) * 3), by = a, with = FALSE][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
x[ , get("mynames") := list(mean(b) * 4, sum(b) * 3), by = a][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
x[ , eval(mynames) := list(mean(b) * 4, sum(b) * 3), by = a][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
答案 1 :(得分:28)
以下简写符号可能有用。所有积分均归Andrew Brooks, specifically this article。
dt[,`:=`(avg=mean(mpg), med=median(mpg), min=min(mpg)), by=cyl]