matplotlib:使用色彩图为表格单元格背景着色

时间:2012-07-24 01:56:43

标签: python colors matplotlib

我有一个Pandas数据帧,我想将其绘制为matplotlib表。到目前为止,我有一部分使用以下代码:

import numpy as np
randn = np.random.randn
from pandas import *

idx = Index(arange(1,11))
df = DataFrame(randn(10, 5), index=idx, columns=['A', 'B', 'C', 'D', 'E'])
vals = np.around(df.values,2)

fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])

the_table=plt.table(cellText=vals, rowLabels=df.index, colLabels=df.columns, 
                    colWidths = [0.03]*vals.shape[1], loc='center')

table_props = the_table.properties()
table_cells = table_props['child_artists']

clm = cm.hot(vals)

for cell in table_cells: 
    cell.set_height(0.04)
    # now i would like to set the backgroundcolor of the cell

在这结束时,我想根据色彩图设置单元格的背景颜色 - 但是如何在没有索引的clm数组中查找它?

另一个问题:我可以以某种方式将格式字符串传递给表格,以便将文本格式化为2个小数位吗?

任何提示赞赏, 安迪

2 个答案:

答案 0 :(得分:12)

您可以使用plt.Normalize()来规范化数据,并将规范化数据传递给Colormap object,例如plt.cm.hot()

plt.table()有一个参数cellColours,它将用于相应地设置单元格的背景颜色。

由于cm.hot将黑色映射到最小值,因此我在创建规范化对象时增加了值范围。

以下是代码:

from matplotlib import pyplot as plt
import numpy as np
randn = np.random.randn
from pandas import *

idx = Index(np.arange(1,11))
df = DataFrame(randn(10, 5), index=idx, columns=['A', 'B', 'C', 'D', 'E'])
vals = np.around(df.values,2)
norm = plt.Normalize(vals.min()-1, vals.max()+1)
colours = plt.cm.hot(normal(vals))

fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])

the_table=plt.table(cellText=vals, rowLabels=df.index, colLabels=df.columns, 
                    colWidths = [0.03]*vals.shape[1], loc='center', 
                    cellColours=colours)
plt.show()

enter image description here

答案 1 :(得分:0)

Andy的代码正在运作:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

# sudo apt-get install python-pandas
# sudo apt-get install python-matplotlib
# 
# python teste.py

from matplotlib import pyplot
from matplotlib import cm

import numpy

from pandas import *

idx = Index(numpy.arange(1, 11))

df = DataFrame(
        numpy.random.randn(10, 5),
        index=idx,
        columns=['A', 'B', 'C', 'D', 'E']
    )

vals = numpy.around(df.values, 2)

normal = pyplot.normalize(vals.min()-1, vals.max()+1)

fig = pyplot.figure(figsize=(15, 8))

ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])

the_table = pyplot.table(
                cellText=vals,
                rowLabels=df.index,
                colLabels=df.columns, 
                colWidths = [0.03]*vals.shape[1],
                loc='center', 
                cellColours=pyplot.cm.hot(normal(vals))
            )

pyplot.show()