我有一个Pandas数据帧,我想将其绘制为matplotlib表。到目前为止,我有一部分使用以下代码:
import numpy as np
randn = np.random.randn
from pandas import *
idx = Index(arange(1,11))
df = DataFrame(randn(10, 5), index=idx, columns=['A', 'B', 'C', 'D', 'E'])
vals = np.around(df.values,2)
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])
the_table=plt.table(cellText=vals, rowLabels=df.index, colLabels=df.columns,
colWidths = [0.03]*vals.shape[1], loc='center')
table_props = the_table.properties()
table_cells = table_props['child_artists']
clm = cm.hot(vals)
for cell in table_cells:
cell.set_height(0.04)
# now i would like to set the backgroundcolor of the cell
在这结束时,我想根据色彩图设置单元格的背景颜色 - 但是如何在没有索引的clm数组中查找它?
另一个问题:我可以以某种方式将格式字符串传递给表格,以便将文本格式化为2个小数位吗?
任何提示赞赏, 安迪
答案 0 :(得分:12)
您可以使用plt.Normalize()
来规范化数据,并将规范化数据传递给Colormap
object,例如plt.cm.hot()
。
plt.table()
有一个参数cellColours
,它将用于相应地设置单元格的背景颜色。
由于cm.hot
将黑色映射到最小值,因此我在创建规范化对象时增加了值范围。
以下是代码:
from matplotlib import pyplot as plt
import numpy as np
randn = np.random.randn
from pandas import *
idx = Index(np.arange(1,11))
df = DataFrame(randn(10, 5), index=idx, columns=['A', 'B', 'C', 'D', 'E'])
vals = np.around(df.values,2)
norm = plt.Normalize(vals.min()-1, vals.max()+1)
colours = plt.cm.hot(normal(vals))
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])
the_table=plt.table(cellText=vals, rowLabels=df.index, colLabels=df.columns,
colWidths = [0.03]*vals.shape[1], loc='center',
cellColours=colours)
plt.show()
答案 1 :(得分:0)
Andy的代码正在运作:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# sudo apt-get install python-pandas
# sudo apt-get install python-matplotlib
#
# python teste.py
from matplotlib import pyplot
from matplotlib import cm
import numpy
from pandas import *
idx = Index(numpy.arange(1, 11))
df = DataFrame(
numpy.random.randn(10, 5),
index=idx,
columns=['A', 'B', 'C', 'D', 'E']
)
vals = numpy.around(df.values, 2)
normal = pyplot.normalize(vals.min()-1, vals.max()+1)
fig = pyplot.figure(figsize=(15, 8))
ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])
the_table = pyplot.table(
cellText=vals,
rowLabels=df.index,
colLabels=df.columns,
colWidths = [0.03]*vals.shape[1],
loc='center',
cellColours=pyplot.cm.hot(normal(vals))
)
pyplot.show()