对于我的任务,我要对霍夫曼树进行编码和解码。我在创建树时遇到问题,而且卡住了。
不介意打印语句 - 它们只是供我测试并查看函数运行时的输出。
对于第一个for循环,我从我在主块中用于测试的文本文件中获取了所有值和索引。
在第二个for循环中,我将所有内容插入到优先级队列中。
我对于接下来要去哪里感到困惑 - 我正在尝试制作节点,但我对如何进展感到困惑。有人可以告诉我,如果我这样做了吗?
def _create_code(self, frequencies):
'''(HuffmanCoder, sequence(int)) -> NoneType
iterate over index into the sequence keeping it 256 elements long, '''
#fix docstring
p = PriorityQueue()
print frequencies
index = 0
for value in frequencies:
if value != 0:
print value #priority
print index #elm
print '-----------'
index = index + 1
for i in range(len(frequencies)):
if frequencies[i] != 0:
p.insert(i, frequencies[i])
print i,frequencies[i]
if p.is_empty():
a = p.get_min()
b = p.get_min()
n1 = self.HuffmanNode(None, None, a)
n2 = self.HuffmanNode(None, None, b)
print a, b, n1, n2
while not p.is_empty():
p.get_min()
我手动插入前两个来启动我的树,这是正确的吗?
我该如何继续?我知道它的想法,只是代码方面我很困难。
顺便说一下,这是使用python。我试着看维基百科,我知道步骤,我只需要帮助代码以及我应该如何继续,谢谢!
HuffmanNode来自这个嵌套类:
class HuffmanNode(object):
def __init__(self, left=None, right=None, root=None):
self.left = left
self.right = right
self.root = root
答案 0 :(得分:10)
维基百科中的霍夫曼算法告诉您如何创建节点树,因此您的程序可以基于该算法或其他类似算法。这是一个Python程序,其中的注释显示了相应的维基百科算法步骤。测试数据是英文文本中字母表字母的频率。
创建节点树后,需要将其向下移动以将霍夫曼代码分配给数据集中的每个符号。由于这是作业,这一步取决于你,但递归算法是处理它的最简单和最自然的方法。它只有六行代码。
import queue
class HuffmanNode(object):
def __init__(self, left=None, right=None, root=None):
self.left = left
self.right = right
self.root = root # Why? Not needed for anything.
def children(self):
return((self.left, self.right))
freq = [
(8.167, 'a'), (1.492, 'b'), (2.782, 'c'), (4.253, 'd'),
(12.702, 'e'),(2.228, 'f'), (2.015, 'g'), (6.094, 'h'),
(6.966, 'i'), (0.153, 'j'), (0.747, 'k'), (4.025, 'l'),
(2.406, 'm'), (6.749, 'n'), (7.507, 'o'), (1.929, 'p'),
(0.095, 'q'), (5.987, 'r'), (6.327, 's'), (9.056, 't'),
(2.758, 'u'), (1.037, 'v'), (2.365, 'w'), (0.150, 'x'),
(1.974, 'y'), (0.074, 'z') ]
def create_tree(frequencies):
p = queue.PriorityQueue()
for value in frequencies: # 1. Create a leaf node for each symbol
p.put(value) # and add it to the priority queue
while p.qsize() > 1: # 2. While there is more than one node
l, r = p.get(), p.get() # 2a. remove two highest nodes
node = HuffmanNode(l, r) # 2b. create internal node with children
p.put((l[0]+r[0], node)) # 2c. add new node to queue
return p.get() # 3. tree is complete - return root node
node = create_tree(freq)
print(node)
# Recursively walk the tree down to the leaves,
# assigning a code value to each symbol
def walk_tree(node, prefix="", code={}):
return(code)
code = walk_tree(node)
for i in sorted(freq, reverse=True):
print(i[1], '{:6.2f}'.format(i[0]), code[i[1]])
在字母数据上运行时,生成的霍夫曼代码为:
e 12.70 100
t 9.06 000
a 8.17 1110
o 7.51 1101
i 6.97 1011
n 6.75 1010
s 6.33 0111
h 6.09 0110
r 5.99 0101
d 4.25 11111
l 4.03 11110
c 2.78 01001
u 2.76 01000
m 2.41 00111
w 2.37 00110
f 2.23 00100
g 2.02 110011
y 1.97 110010
p 1.93 110001
b 1.49 110000
v 1.04 001010
k 0.75 0010111
j 0.15 001011011
x 0.15 001011010
q 0.10 001011001
z 0.07 001011000
答案 1 :(得分:5)
@Dave walk_tree缺少树处理代码
# Recursively walk the tree down to the leaves,
# assigning a code value to each symbol
def walk_tree(node, prefix="", code={}):
if isinstance(node[1].left[1], HuffmanNode):
walk_tree(node[1].left,prefix+"0", code)
else:
code[node[1].left[1]]=prefix+"0"
if isinstance(node[1].right[1],HuffmanNode):
walk_tree(node[1].right,prefix+"1", code)
else:
code[node[1].right[1]]=prefix+"1"
return(code)
答案 2 :(得分:4)
另一个解决方案是返回字典{label:code}
和包含结果图的递归字典tree
。输入vals
采用字典{label:freq}
的形式:
def assign_code(nodes, label, result, prefix = ''):
childs = nodes[label]
tree = {}
if len(childs) == 2:
tree['0'] = assign_code(nodes, childs[0], result, prefix+'0')
tree['1'] = assign_code(nodes, childs[1], result, prefix+'1')
return tree
else:
result[label] = prefix
return label
def Huffman_code(_vals):
vals = _vals.copy()
nodes = {}
for n in vals.keys(): # leafs initialization
nodes[n] = []
while len(vals) > 1: # binary tree creation
s_vals = sorted(vals.items(), key=lambda x:x[1])
a1 = s_vals[0][0]
a2 = s_vals[1][0]
vals[a1+a2] = vals.pop(a1) + vals.pop(a2)
nodes[a1+a2] = [a1, a2]
code = {}
root = a1+a2
tree = {}
tree = assign_code(nodes, root, code) # assignment of the code for the given binary tree
return code, tree
这可以用作:
freq = [
(8.167, 'a'), (1.492, 'b'), (2.782, 'c'), (4.253, 'd'),
(12.702, 'e'),(2.228, 'f'), (2.015, 'g'), (6.094, 'h'),
(6.966, 'i'), (0.153, 'j'), (0.747, 'k'), (4.025, 'l'),
(2.406, 'm'), (6.749, 'n'), (7.507, 'o'), (1.929, 'p'),
(0.095, 'q'), (5.987, 'r'), (6.327, 's'), (9.056, 't'),
(2.758, 'u'), (1.037, 'v'), (2.365, 'w'), (0.150, 'x'),
(1.974, 'y'), (0.074, 'z') ]
vals = {l:v for (v,l) in freq}
code, tree = Huffman_code(vals)
text = 'hello' # text to encode
encoded = ''.join([code[t] for t in text])
print('Encoded text:',encoded)
decoded = []
i = 0
while i < len(encoded): # decoding using the binary graph
ch = encoded[i]
act = tree[ch]
while not isinstance(act, str):
i += 1
ch = encoded[i]
act = act[ch]
decoded.append(act)
i += 1
print('Decoded text:',''.join(decoded))
该图由以下脚本生成(需要Graphviz):
def draw_tree(tree, prefix = ''):
if isinstance(tree, str):
descr = 'N%s [label="%s:%s", fontcolor=blue, fontsize=16, width=2, shape=box];\n'%(prefix, tree, prefix)
else: # Node description
descr = 'N%s [label="%s"];\n'%(prefix, prefix)
for child in tree.keys():
descr += draw_tree(tree[child], prefix = prefix+child)
descr += 'N%s -> N%s;\n'%(prefix,prefix+child)
return descr
import subprocess
with open('graph.dot','w') as f:
f.write('digraph G {\n')
f.write(draw_tree(tree))
f.write('}')
subprocess.call('dot -Tpng graph.dot -o graph.png', shell=True)
答案 3 :(得分:2)
@Dave类HuffmanNode(对象)有一个微妙的bug。当两个频率相等时,抛出异常:例如,让
freq = [ (200/3101, 'd'), (100/3101, 'e'), (100/3101, 'f') ]
然后你得到TypeError:unorderable类型:HuffmanNode()&lt; STR()。 问题与PriorityQueue实现有关。我怀疑当元组的第一个元素比较相等时,PriorityQueue想要比较第二个元素,其中一个是python对象。您将 lt 方法添加到您的课程中,问题就解决了。
def __lt__(self,other):
return 0