在metro应用程序中,我需要执行许多WCF调用。有大量的调用,所以我需要在并行循环中进行调用。问题是并行循环在WCF调用完成之前退出。
你如何重构这个按预期工作?
var ids = new List<string>() { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
var customers = new System.Collections.Concurrent.BlockingCollection<Customer>();
Parallel.ForEach(ids, async i =>
{
ICustomerRepo repo = new CustomerRepo();
var cust = await repo.GetCustomer(i);
customers.Add(cust);
});
foreach ( var customer in customers )
{
Console.WriteLine(customer.ID);
}
Console.ReadKey();
答案 0 :(得分:140)
Parallel.ForEach()
背后的整个想法是你有一组线程,每个线程处理集合的一部分。正如您所注意到的,这不适用于async
- await
,您希望在异步调用期间释放该线程。
您可以通过阻止ForEach()
个帖子来“修复”这一点,但这会使async
- await
的整个点失效。
您可以使用TPL Dataflow代替Parallel.ForEach()
,它支持异步Task
。
具体来说,您的代码可以使用TransformBlock
编写,Customer
使用async
lambda将每个ID转换为ActionBlock
。该块可以配置为并行执行。您可以将该块链接到将Customer
写入控制台的Post()
。
设置阻止网络后,您可以TransformBlock
将每个ID添加到var ids = new List<string> { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
var getCustomerBlock = new TransformBlock<string, Customer>(
async i =>
{
ICustomerRepo repo = new CustomerRepo();
return await repo.GetCustomer(i);
}, new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
});
var writeCustomerBlock = new ActionBlock<Customer>(c => Console.WriteLine(c.ID));
getCustomerBlock.LinkTo(
writeCustomerBlock, new DataflowLinkOptions
{
PropagateCompletion = true
});
foreach (var id in ids)
getCustomerBlock.Post(id);
getCustomerBlock.Complete();
writeCustomerBlock.Completion.Wait();
。
在代码中:
TransformBlock
虽然您可能希望将TransformBlock
的并行性限制为某个小常量。此外,您可以限制SendAsync()
的容量,并使用{{1}}异步添加项目,例如,如果集合太大。
与您的代码(如果有效)相比,一个额外的好处是,只要单个项目完成,写入就会立即开始,而不是等到所有处理完成。
答案 1 :(得分:104)
svick's answer(像往常一样)很棒。
但是,当您实际需要传输大量数据时,我发现Dataflow更有用。或者当您需要async
兼容队列时。
在您的情况下,更简单的解决方案是使用async
式并行:
var ids = new List<string>() { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
var customerTasks = ids.Select(i =>
{
ICustomerRepo repo = new CustomerRepo();
return repo.GetCustomer(i);
});
var customers = await Task.WhenAll(customerTasks);
foreach (var customer in customers)
{
Console.WriteLine(customer.ID);
}
Console.ReadKey();
答案 2 :(得分:67)
使用DataFlow作为svick建议可能有点过分,而Stephen的回答并没有提供控制操作并发性的方法。但是,这可以简单地实现:
public static async Task RunWithMaxDegreeOfConcurrency<T>(
int maxDegreeOfConcurrency, IEnumerable<T> collection, Func<T, Task> taskFactory)
{
var activeTasks = new List<Task>(maxDegreeOfConcurrency);
foreach (var task in collection.Select(taskFactory))
{
activeTasks.Add(task);
if (activeTasks.Count == maxDegreeOfConcurrency)
{
await Task.WhenAny(activeTasks.ToArray());
//observe exceptions here
activeTasks.RemoveAll(t => t.IsCompleted);
}
}
await Task.WhenAll(activeTasks.ToArray()).ContinueWith(t =>
{
//observe exceptions in a manner consistent with the above
});
}
ToArray()
调用可以通过使用数组而不是列表来优化并替换已完成的任务,但我怀疑它在大多数情况下会产生很大的不同。根据OP的问题使用样本:
RunWithMaxDegreeOfConcurrency(10, ids, async i =>
{
ICustomerRepo repo = new CustomerRepo();
var cust = await repo.GetCustomer(i);
customers.Add(cust);
});
编辑 SO用户和TPL wiz Eli Arbel向我指了related article from Stephen Toub。像往常一样,他的实施既优雅又高效:
public static Task ForEachAsync<T>(
this IEnumerable<T> source, int dop, Func<T, Task> body)
{
return Task.WhenAll(
from partition in Partitioner.Create(source).GetPartitions(dop)
select Task.Run(async delegate {
using (partition)
while (partition.MoveNext())
await body(partition.Current).ContinueWith(t =>
{
//observe exceptions
});
}));
}
答案 3 :(得分:28)
您可以使用新的AsyncEnumerator NuGet Package来节省工作量,这是4年前问题最初发布时不存在的问题。它允许您控制并行度:
using System.Collections.Async;
...
await ids.ParallelForEachAsync(async i =>
{
ICustomerRepo repo = new CustomerRepo();
var cust = await repo.GetCustomer(i);
customers.Add(cust);
},
maxDegreeOfParallelism: 10);
免责声明:我是AsyncEnumerator库的作者,该库是开放源码并在MIT下获得许可,我发布此消息只是为了帮助社区。 p>
答案 4 :(得分:12)
将Parallel.Foreach
换成Task.Run()
而不是await
关键字使用[yourasyncmethod].Result
(你需要执行Task.Run事情来阻止UI线程)
这样的事情:
var yourForeachTask = Task.Run(() =>
{
Parallel.ForEach(ids, i =>
{
ICustomerRepo repo = new CustomerRepo();
var cust = repo.GetCustomer(i).Result;
customers.Add(cust);
});
});
await yourForeachTask;
答案 5 :(得分:7)
这应该非常有效,并且比让整个TPL数据流工作更容易:
var customers = await ids.SelectAsync(async i =>
{
ICustomerRepo repo = new CustomerRepo();
return await repo.GetCustomer(i);
});
...
public static async Task<IList<TResult>> SelectAsync<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, Task<TResult>> selector, int maxDegreesOfParallelism = 4)
{
var results = new List<TResult>();
var activeTasks = new HashSet<Task<TResult>>();
foreach (var item in source)
{
activeTasks.Add(selector(item));
if (activeTasks.Count >= maxDegreesOfParallelism)
{
var completed = await Task.WhenAny(activeTasks);
activeTasks.Remove(completed);
results.Add(completed.Result);
}
}
results.AddRange(await Task.WhenAll(activeTasks));
return results;
}
答案 6 :(得分:4)
我派对的时间有点晚,但您可能需要考虑使用GetAwaiter.GetResult()在同步上下文中运行异步代码,但如下所示:
Parallel.ForEach(ids, i =>
{
ICustomerRepo repo = new CustomerRepo();
// Run this in thread which Parallel library occupied.
var cust = repo.GetCustomer(i).GetAwaiter().GetResult();
customers.Add(cust);
});
答案 7 :(得分:3)
在介绍了一堆辅助方法之后,您将能够使用以下简单语法运行并行查询:
const int DegreeOfParallelism = 10;
IEnumerable<double> result = await Enumerable.Range(0, 1000000)
.Split(DegreeOfParallelism)
.SelectManyAsync(async i => await CalculateAsync(i).ConfigureAwait(false))
.ConfigureAwait(false);
这里发生的是:我们将源集合拆分为10个块(.Split(DegreeOfParallelism)
),然后运行10个任务,逐个处理其项目(.SelectManyAsync(...)
)并将它们合并回单个列表。
值得一提的是有一种更简单的方法:
double[] result2 = await Enumerable.Range(0, 1000000)
.Select(async i => await CalculateAsync(i).ConfigureAwait(false))
.WhenAll()
.ConfigureAwait(false);
但它需要预防措施:如果您的源集合太大,它会立即为每个项目安排Task
,这可能会导致显着的性能提升。< / p>
以上示例中使用的扩展方法如下所示:
public static class CollectionExtensions
{
/// <summary>
/// Splits collection into number of collections of nearly equal size.
/// </summary>
public static IEnumerable<List<T>> Split<T>(this IEnumerable<T> src, int slicesCount)
{
if (slicesCount <= 0) throw new ArgumentOutOfRangeException(nameof(slicesCount));
List<T> source = src.ToList();
var sourceIndex = 0;
for (var targetIndex = 0; targetIndex < slicesCount; targetIndex++)
{
var list = new List<T>();
int itemsLeft = source.Count - targetIndex;
while (slicesCount * list.Count < itemsLeft)
{
list.Add(source[sourceIndex++]);
}
yield return list;
}
}
/// <summary>
/// Takes collection of collections, projects those in parallel and merges results.
/// </summary>
public static async Task<IEnumerable<TResult>> SelectManyAsync<T, TResult>(
this IEnumerable<IEnumerable<T>> source,
Func<T, Task<TResult>> func)
{
List<TResult>[] slices = await source
.Select(async slice => await slice.SelectListAsync(func).ConfigureAwait(false))
.WhenAll()
.ConfigureAwait(false);
return slices.SelectMany(s => s);
}
/// <summary>Runs selector and awaits results.</summary>
public static async Task<List<TResult>> SelectListAsync<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, Task<TResult>> selector)
{
List<TResult> result = new List<TResult>();
foreach (TSource source1 in source)
{
TResult result1 = await selector(source1).ConfigureAwait(false);
result.Add(result1);
}
return result;
}
/// <summary>Wraps tasks with Task.WhenAll.</summary>
public static Task<TResult[]> WhenAll<TResult>(this IEnumerable<Task<TResult>> source)
{
return Task.WhenAll<TResult>(source);
}
}
答案 8 :(得分:2)
一种扩展方法,它使用SemaphoreSlim并允许设置最大并行度
/// <summary>
/// Concurrently Executes async actions for each item of <see cref="IEnumerable<typeparamref name="T"/>
/// </summary>
/// <typeparam name="T">Type of IEnumerable</typeparam>
/// <param name="enumerable">instance of <see cref="IEnumerable<typeparamref name="T"/>"/></param>
/// <param name="action">an async <see cref="Action" /> to execute</param>
/// <param name="maxDegreeOfParallelism">Optional, An integer that represents the maximum degree of parallelism,
/// Must be grater than 0</param>
/// <returns>A Task representing an async operation</returns>
/// <exception cref="ArgumentOutOfRangeException">If the maxActionsToRunInParallel is less than 1</exception>
public static async Task ForEachAsyncConcurrent<T>(
this IEnumerable<T> enumerable,
Func<T, Task> action,
int? maxDegreeOfParallelism = null)
{
if (maxDegreeOfParallelism.HasValue)
{
using (var semaphoreSlim = new SemaphoreSlim(
maxDegreeOfParallelism.Value, maxDegreeOfParallelism.Value))
{
var tasksWithThrottler = new List<Task>();
foreach (var item in enumerable)
{
// Increment the number of currently running tasks and wait if they are more than limit.
await semaphoreSlim.WaitAsync();
tasksWithThrottler.Add(Task.Run(async () =>
{
await action(item).ContinueWith(res =>
{
// action is completed, so decrement the number of currently running tasks
semaphoreSlim.Release();
});
}));
}
// Wait for all tasks to complete.
await Task.WhenAll(tasksWithThrottler.ToArray());
}
}
else
{
await Task.WhenAll(enumerable.Select(item => action(item)));
}
}
样本用法:
await enumerable.ForEachAsyncConcurrent(
async item =>
{
await SomeAsyncMethod(item);
},
5);
答案 9 :(得分:0)
这是基于ActionBlock
库中的TPL Dataflow的ForEachAsync
方法的简单通用实现,该库现已嵌入.NET 5平台:
public static Task ForEachAsync<T>(this IEnumerable<T> source,
Func<T, Task> action, int dop)
{
// Arguments validation omitted
var block = new ActionBlock<T>(action,
new ExecutionDataflowBlockOptions() { MaxDegreeOfParallelism = dop });
foreach (var item in source) block.Post(item);
block.Complete();
return block.Completion;
}
此解决方案热切地枚举提供的IEnumerable
,并立即将其所有元素发送到ActionBlock
。因此,它不适用于具有大量元素的枚举。下面是一种更复杂的方法,该方法惰性地枚举源,并将其元素一一发送到ActionBlock
:
public static async Task ForEachAsync<T>(this IEnumerable<T> source,
Func<T, Task> action, int dop)
{
// Arguments validation omitted
var block = new ActionBlock<T>(action, new ExecutionDataflowBlockOptions()
{ MaxDegreeOfParallelism = dop, BoundedCapacity = dop });
foreach (var item in source)
{
if (!await block.SendAsync(item).ConfigureAwait(false)) break;
}
block.Complete();
try { await block.Completion.ConfigureAwait(false); }
catch
{
if (block.Completion.IsFaulted) throw block.Completion.Exception;
throw;
}
}
在异常情况下,这两种方法的行为不同。第一个¹直接在其AggregateException
属性中传播包含异常的InnerExceptions
。第二个传播一个AggregateException
,其中包含另一个AggregateException
,但有例外。我个人觉得第二种方法的行为在实践中更方便,因为等待它会自动消除一定程度的嵌套,因此我可以简单地catch (AggregateException aex)
并在aex.InnerExceptions
块中处理catch
。第一种方法需要在等待之前存储Task
,以便我可以访问task.Exception.InnerExceptions
块内的catch
。有关从异步方法传播异常的更多信息,请查看here。
¹第一个实现elides async and await。
答案 10 :(得分:-1)
无需 TPL 的简单原生方式:
int totalThreads = 0; int maxThreads = 3;
foreach (var item in YouList)
{
while (totalThreads >= maxThreads) await Task.Delay(500);
Interlocked.Increment(ref totalThreads);
MyAsyncTask(item).ContinueWith((res) => Interlocked.Decrement(ref totalThreads));
}
您可以在下一个任务中检查此解决方案:
async static Task MyAsyncTask(string item)
{
await Task.Delay(2500);
Console.WriteLine(item);
}