SELECT ... WHERE NOT IN(SELECT ..)与字符串的性能急剧下降

时间:2012-07-18 16:08:50

标签: sql performance postgresql

问题:

SELECT new_filename
FROM tmp2_import_lightnings_filenames
WHERE new_filename
    NOT IN (SELECT filename FROM service.import_lightnings_filenames LIMIT 64500)
LIMIT 1;

执行时间: 62 ms

SELECT new_filename
FROM tmp2_import_lightnings_filenames
WHERE new_filename
    NOT IN (SELECT filename FROM service.import_lightnings_filenames LIMIT 65000)
LIMIT 1;

执行时间: 4.742秒

(所有LIMITS仅用于测试)。

巨大的滞后!它呈指数级增长。

TABLES:

CREATE TABLE public.tmp2_import_lightnings_filenames (
  new_filename VARCHAR(63) NOT NULL, 
  CONSTRAINT tmp2_import_lightnings_filenames_pkey PRIMARY KEY(new_filename)
) WITHOUT OIDS;

表格大小:7304字符串

数据示例:/xml/2012-07-13/01/01-24.xml

CREATE TABLE service.import_lightnings_filenames (
  id SERIAL, 
  filename VARCHAR(63) NOT NULL, 
  imported BOOLEAN DEFAULT false, 
  strokes_num INTEGER, 
  CONSTRAINT import_lightnings_filenames_pkey PRIMARY KEY(id)
) WITHOUT OIDS;

CREATE UNIQUE INDEX import_lightnings_filenames_idx
ON service.import_lightnings_filenames
USING btree (filename COLLATE pg_catalog."default");

表格大小:70812字符串

数据示例:44;/xml/2012-05-26/12/12-18.xml;TRUE;NULL

查询计划:

 Limit  (cost=0.00..2108.11 rows=1 width=29) (actual time=240.183..240.183 rows=1 loops=1)
   Buffers: shared hit=539, temp written=307
   ->  Seq Scan on tmp2_import_lightnings_filenames  (cost=0.00..7698823.12 rows=3652 width=29) (actual time=240.181..240.181 rows=1 loops=1)
         Filter: (NOT (SubPlan 1))
         Buffers: shared hit=539, temp written=307
         SubPlan 1
           ->  Materialize  (cost=0.00..1946.82 rows=64500 width=29) (actual time=0.009..198.313 rows=64500 loops=1)
                 Buffers: shared hit=538, temp written=307
                 ->  Limit  (cost=0.00..1183.32 rows=64500 width=29) (actual time=0.005..113.196 rows=64500 loops=1)
                       Buffers: shared hit=538
                       ->  Seq Scan on import_lightnings_filenames  (cost=0.00..1299.12 rows=70812 width=29) (actual time=0.004..42.418 rows=64500 loops=1)
                             Buffers: shared hit=538
 Total runtime: 240.982 ms



  Limit  (cost=0.00..2125.03 rows=1 width=29) (actual time=30734.619..30734.619 rows=1 loops=1)
   Buffers: shared hit=547, temp read=112258 written=669
   ->  Seq Scan on tmp2_import_lightnings_filenames  (cost=0.00..7760626.00 rows=3652 width=29) (actual time=30734.617..30734.617 rows=1 loops=1)
         Filter: (NOT (SubPlan 1))
         Buffers: shared hit=547, temp read=112258 written=669
         SubPlan 1
           ->  Materialize  (cost=0.00..1962.49 rows=65000 width=29) (actual time=0.798..42.306 rows=64820 loops=363)
                 Buffers: shared hit=543, temp read=112258 written=669
                 ->  Limit  (cost=0.00..1192.49 rows=65000 width=29) (actual time=0.005..116.110 rows=65000 loops=1)
                       Buffers: shared hit=543
                       ->  Seq Scan on import_lightnings_filenames  (cost=0.00..1299.12 rows=70812 width=29) (actual time=0.003..43.804 rows=65000 loops=1)
                             Buffers: shared hit=543
 Total runtime: 30735.267 ms

我做错了什么?

2 个答案:

答案 0 :(得分:3)

性能下降的原因似乎是您用尽work_mem并且materialize步骤开始交换到磁盘。我在这里引用手册:

  

work_mem(整数)
  [...]散列表用于散列连接,   基于散列的聚合,以及 IN子查询的基于散列的处理。

强调我的。通过提高work_mem的设置并再次运行查询来验证这一点。正如评论中提供的@a_horse,通过调用:

为当前会话设置它
set work_mem = '64MB';

你不需要你的系统管理员。您可以在会话中重置为默认值:

reset work_mem;

设置将在会话结束时消失。更改postgresql.conf(并重新加载)中的设置以获得永久效果。

许多PostgreSQL软件包都带有非常保守的设置(默认为1MB)。这在很大程度上取决于您的工作负载,但一般情况下,一台4 GB或更多的计算机上的16 MB是最小的。我在具有12 GB RAM的专用数据库服务器上使用64 MB - 只有很少的并发用户。

您可能需要对设置进行一些常规调整。以下是general performance optimization in the PostgreSQL Wiki的指针列表。您还可以在链接后找到有关work_mem调整的更多信息。


除此之外,重写您的查询也可能会加快速度。带有大列表的IN子查询往往是PostgreSQL中最慢的选择。

LEFT JOIN / IS NULL

SELECT new_filename
FROM   tmp2_import_lightnings_filenames t
LEFT   JOIN (
    SELECT filename
    FROM   service.import_lightnings_filenames
    LIMIT  65000
    ) x ON t.new_filename = x.filename 
WHERE  x.filename IS NULL;

NOT EXISTS

特别是service.import_lightnings_filenames

中的重复项更快
SELECT new_filename
FROM   tmp2_import_lightnings_filenames t
WHERE  NOT EXISTS (
    SELECT 1
    FROM (
        SELECT filename
        FROM   service.import_lightnings_filenames
        LIMIT  65000
        ) x
    WHERE t.new_filename = x.filename 
    );

CTE 相同(可能不会更快,但更容易阅读):

WITH x AS (
    SELECT filename
    FROM   service.import_lightnings_filenames
    LIMIT  65000
    )
SELECT new_filename
FROM   tmp2_import_lightnings_filenames t
WHERE  NOT EXISTS (
    SELECT 1
    FROM   x
    WHERE  t.new_filename = x.filename 
    );

答案 1 :(得分:0)

-- SET work_mem=20000;
SET random_page_cost=1.1;
SET effective_cache_size=10000000;

work_mem设置为1-20 MB将更喜欢哈希表(只要它们适合核心)这对于小到中等大小的查询是有效的。

设置random_page_cost更低将导致查询生成器在需要时更喜欢索引扫描。这是OP的第一个和第二个查询之间的跳闸点。 (但是,跳过索引扫描阶段,支持seqscan) 默认值(= 4)太高了)

effective_cache_size是OS维护的LRU缓冲量的估计值。将其设置得尽可能高(不引起交换)