您好我是VBA代码的新手,正在研究在Excel中的UDF内部进行一些非线性曲线拟合。我熟悉Matlab,我的大多数经验来自于。我正在寻找一个Sub / Function,它将为我提供类似于Matlab的fminsearch()的功能。任何帮助,将不胜感激。感谢
编辑(2)以回应Brad
假设我想编写自己的UDF,它使用最小化迭代地查找数字的立方根。我可以写下面的功能吗?
Function myCubRootSResd(root As Double, rootCubed As Double) As Double
Dim a As Double
a = (root * root * root - rootCubed)
myCubRootSResd = a * a
End Function
然后,这可以与Solver一起使用,通过更改输入“root”将此函数的输出设置为零来查找任何数字的立方根。然而,这只是我需要在我试图编写的UDF中执行的一步,这个输出(在本例中是立方根)我需要在我的UDF中使用,最终计算最终输出。然后我想使用相对引用来使用我的整体UDF来计算一系列输入。我相信这需要在VBA中进行最小化,而不是参考单元。在这种情况下,封装函数将处理“root”的值并返回该值。它只有一个输入“rootCubed”,并将它传递给myCubeRootSResd。所以它看起来像这样:
Function myCubeRootFinder(rootCubed as Double) as Double
…….
End Function
任何帮助都会非常感激我一直试图找到一个简单的解决方案,我现在还没有找到任何人在VBA中进行这种数值最小化的例子。
我意识到这可能不是在VBA中解决这个问题的方法,但需要保留功能。谢谢你的病人。
答案 0 :(得分:2)
好的我玩得很开心。
创建一个名为FuncEval的类:
Option Explicit
Dim output_ As Double
Dim input_() As Double
Public Property Get VectArr() As Double()
VectArr = input_
End Property
Public Function Vect(i As Integer)
Vect = input_(i)
End Function
Public Sub SetVect(ByRef newVect() As Double)
Dim i As Integer
ReDim input_(LBound(newVect) To UBound(newVect)) As Double
For i = LBound(newVect) To UBound(newVect)
input_(i) = newVect(i)
Next i
End Sub
Public Property Get Result() As Double
Result = output_
End Property
Public Property Let Result(newRes As Double)
output_ = newRes
End Property
一个名为Func的课程:
Option Explicit
Private cube_ As Double
Public Property Let Cube(newCube As Double)
cube_ = newCube
End Property
Public Function Eval(ByRef val() As Double) As FuncEval
Dim ret As New FuncEval
ret.Result = Abs(cube_ - val(0) * val(0) * val(0))
ret.SetVect val
Set Eval = ret
End Function
现在将此代码放在标准模块中:
Option Explicit
Function NelderMead(f As Func, _
ByRef guess() As Double) As Double()
'Algorithm follows that outlined here:
'http://www.mathworks.com/help/techdoc/math/bsotu2d.html#bsgpq6p-11
'Used as the perturbation for the initial guess when guess(i) == 0
Dim zeroPert As Double
zeroPert = 0.00025
'The factor each element of guess(i) is multiplied by to obtain the
'initial simplex
Dim pertFact As Double
pertFact = 1.05
'Tolerance
Dim eps As Double
eps = 0.000000000001
Dim shrink As Boolean
Dim i As Integer, j As Integer, n As Integer
Dim simplex() As Variant
Dim origVal As Double, lowest As Double
Dim m() As Double, r() As Double, s() As Double, c() As Double, cc() As Double, diff() As Double
Dim FE As FuncEval, FR As FuncEval, FS As FuncEval, FC As FuncEval, FCC As FuncEval, newFE As FuncEval
n = UBound(guess) - LBound(guess) + 1
ReDim m(LBound(guess) To UBound(guess)) As Double
ReDim r(LBound(guess) To UBound(guess)) As Double
ReDim s(LBound(guess) To UBound(guess)) As Double
ReDim c(LBound(guess) To UBound(guess)) As Double
ReDim cc(LBound(guess) To UBound(guess)) As Double
ReDim diff(LBound(guess) To UBound(guess)) As Double
ReDim simplex(LBound(guess) To UBound(guess) + 1) As Variant
Set simplex(LBound(simplex)) = f.Eval(guess)
'Generate the simplex
For i = LBound(guess) To UBound(guess)
origVal = guess(i)
If origVal = 0 Then
guess(i) = zeroPert
Else
guess(i) = pertFact * origVal
End If
Set simplex(LBound(simplex) + i - LBound(guess) + 1) = f.Eval(guess)
guess(i) = origVal
Next i
'Sort the simplex by f(x)
For i = LBound(simplex) To UBound(simplex) - 1
For j = i + 1 To UBound(simplex)
If simplex(i).Result > simplex(j).Result Then
Set FE = simplex(i)
Set simplex(i) = simplex(j)
Set simplex(j) = FE
End If
Next j
Next i
Do
Set newFE = Nothing
shrink = False
lowest = simplex(LBound(simplex)).Result
'Calculate m
For i = LBound(m) To UBound(m)
m(i) = 0
For j = LBound(simplex) To UBound(simplex) - 1
m(i) = m(i) + simplex(j).Vect(i)
Next j
m(i) = m(i) / n
Next i
'Calculate the reflected point
For i = LBound(r) To UBound(r)
r(i) = 2 * m(i) - simplex(UBound(simplex)).Vect(i)
Next i
Set FR = f.Eval(r)
'Check acceptance conditions
If (simplex(LBound(simplex)).Result <= FR.Result) And (FR.Result < simplex(UBound(simplex) - 1).Result) Then
'Accept r, replace the worst value and iterate
Set newFE = FR
ElseIf FR.Result < simplex(LBound(simplex)).Result Then
'Calculate the expansion point, s
For i = LBound(s) To UBound(s)
s(i) = m(i) + 2 * (m(i) - simplex(UBound(simplex)).Vect(i))
Next i
Set FS = f.Eval(s)
If FS.Result < FR.Result Then
Set newFE = FS
Else
Set newFE = FR
End If
ElseIf FR.Result >= simplex(UBound(simplex) - 1).Result Then
'Perform a contraction between m and the better of x(n+1) and r
If FR.Result < simplex(UBound(simplex)).Result Then
'Contract outside
For i = LBound(c) To UBound(c)
c(i) = m(i) + (r(i) - m(i)) / 2
Next i
Set FC = f.Eval(c)
If FC.Result < FR.Result Then
Set newFE = FC
Else
shrink = True
End If
Else
'Contract inside
For i = LBound(cc) To UBound(cc)
cc(i) = m(i) + (simplex(UBound(simplex)).Vect(i) - m(i)) / 2
Next i
Set FCC = f.Eval(cc)
If FCC.Result < simplex(UBound(simplex)).Result Then
Set newFE = FCC
Else
shrink = True
End If
End If
End If
'Shrink if required
If shrink Then
For i = LBound(simplex) + 1 To UBound(simplex)
For j = LBound(simplex(i).VectArr) To UBound(simplex(i).VectArr)
diff(j) = simplex(LBound(simplex)).Vect(j) + (simplex(i).Vect(j) - simplex(LBound(simplex)).Vect(j)) / 2
Next j
Set simplex(i) = f.Eval(diff)
Next i
End If
'Insert the new element in place
If Not newFE Is Nothing Then
For i = LBound(simplex) To UBound(simplex)
If simplex(i).Result > newFE.Result Then
For j = UBound(simplex) To i + 1 Step -1
Set simplex(j) = simplex(j - 1)
Next j
Set simplex(i) = newFE
Exit For
End If
Next i
End If
Loop Until (simplex(UBound(simplex)).Result - simplex(LBound(simplex)).Result) < eps
NelderMead = simplex(LBound(simplex)).VectArr
End Function
Function test(cube, guess) As Double
Dim f As New Func
Dim guessVec(0 To 0) As Double
Dim Result() As Double
Dim i As Integer
Dim output As String
f.cube = cube
guessVec(0) = guess
Result = NelderMead(f, guessVec)
test = Result(0)
End Function
Func类包含你的剩余函数。 NelderMead方法只需要Func类的Result方法,因此只要Eval方法处理与初始猜测长度相同的向量并返回FuncEval对象,就可以按照自己的意愿使用Func类。
调用测试功能以查看其运行情况。注意,我实际上没有使用多维向量进行测试,我必须出去,如果您有任何问题请告诉我!
编辑:推广功能传递的建议
您需要针对不同的问题制作许多不同的课程。这意味着保持NelderMead功能的一般性,您需要将其声明行更改为以下内容:
Function NelderMead(f As Object, _
ByRef guess() As Double) As Double()
无论f是什么,它必须始终有一个Eval方法,它采用一系列双精度。
编辑:函数传递,可能是在VBA中完成的(愚蠢)方式
Function f(x() As Double) As Double
f = x(0) * x(0)
End Function
Sub Test()
Dim x(0 To 0) As Double
x(0) = 5
Debug.Print Application.Run("f", x)
End Sub
使用此方法,您将获得以下声明:
Function NelderMead(f As String, _
ByRef guess() As Double) As Double()
然后使用上面的Application.Run语法调用f。您还需要在函数内部进行一些更改。它并不漂亮,但坦率地说,开始并不是那么好。
答案 1 :(得分:0)
您可以使用Excel附带的Solver加载项来解决最小化问题。