如何使用OpenSSL的ECC支持来加密或解密文本字符串?我能够使用OpenSSL API生成ECC私钥/公钥,但我不知道如何使用这些密钥加密纯文本。
答案 0 :(得分:17)
由于很难找到显示如何使用ECC加密数据的示例,我以为我会发布一些代码供其他人使用。有关完整列表,请查看我的openssl-dev帖子:
http://www.mail-archive.com/openssl-dev@openssl.org/msg28042.html
基本上是一个如何使用ECDH来保护数据块的可用版本。 ECDH用于生成共享密钥。然后使用SHA 512对共享密钥进行散列。分割得到的512位,其中256位作为对称密码的密钥(在我的示例中为AES 256),其他256位用作HMAC的密钥。我的实施基于SECG工作组概述的ECIES标准。
关键功能是ecies_encrypt(),它接受十六进制形式的公钥并返回加密数据:
secure_t * ecies_encrypt(char *key, unsigned char *data, size_t length) {
void *body;
HMAC_CTX hmac;
int body_length;
secure_t *cryptex;
EVP_CIPHER_CTX cipher;
unsigned int mac_length;
EC_KEY *user, *ephemeral;
size_t envelope_length, block_length, key_length;
unsigned char envelope_key[SHA512_DIGEST_LENGTH], iv[EVP_MAX_IV_LENGTH], block[EVP_MAX_BLOCK_LENGTH];
// Simple sanity check.
if (!key || !data || !length) {
printf("Invalid parameters passed in.\n");
return NULL;
}
// Make sure we are generating enough key material for the symmetric ciphers.
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}", SHA512_DIGEST_LENGTH / 8,
(key_length * 2) / 8);
return NULL;
}
// Convert the user's public key from hex into a full EC_KEY structure.
if (!(user = ecies_key_create_public_hex(key))) {
printf("Invalid public key provided.\n");
return NULL;
}
// Create the ephemeral key used specifically for this block of data.
else if (!(ephemeral = ecies_key_create())) {
printf("An error occurred while trying to generate the ephemeral key.\n");
EC_KEY_free(user);
return NULL;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
else if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, EC_KEY_get0_public_key(user), ephemeral, ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
printf("An error occurred while trying to compute the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// Determine the envelope and block lengths so we can allocate a buffer for the result.
else if ((block_length = EVP_CIPHER_block_size(ECIES_CIPHER)) == 0 || block_length > EVP_MAX_BLOCK_LENGTH || (envelope_length = EC_POINT_point2oct(EC_KEY_get0_group(
ephemeral), EC_KEY_get0_public_key(ephemeral), POINT_CONVERSION_COMPRESSED, NULL, 0, NULL)) == 0) {
printf("Invalid block or envelope length. {block = %zu / envelope = %zu}\n", block_length, envelope_length);
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// We use a conditional to pad the length if the input buffer is not evenly divisible by the block size.
else if (!(cryptex = secure_alloc(envelope_length, EVP_MD_size(ECIES_HASHER), length, length + (length % block_length ? (block_length - (length % block_length)) : 0)))) {
printf("Unable to allocate a secure_t buffer to hold the encrypted result.\n");
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// Store the public key portion of the ephemeral key.
else if (EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral), POINT_CONVERSION_COMPRESSED, secure_key_data(cryptex), envelope_length,
NULL) != envelope_length) {
printf("An error occurred while trying to record the public portion of the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EC_KEY_free(ephemeral);
EC_KEY_free(user);
secure_free(cryptex);
return NULL;
}
// The envelope key has been stored so we no longer need to keep the keys around.
EC_KEY_free(ephemeral);
EC_KEY_free(user);
// For now we use an empty initialization vector.
memset(iv, 0, EVP_MAX_IV_LENGTH);
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
EVP_CIPHER_CTX_init(&cipher);
body = secure_body_data(cryptex);
body_length = secure_body_length(cryptex);
// Initialize the cipher with the envelope key.
if (EVP_EncryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 || EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 || EVP_EncryptUpdate(&cipher, body,
&body_length, data, length - (length % block_length)) != 1) {
printf("An error occurred while trying to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Check whether all of the data was encrypted. If they don't match up, we either have a partial block remaining, or an error occurred.
else if (body_length != length) {
// Make sure all that remains is a partial block, and their wasn't an error.
if (length - body_length >= block_length) {
printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Copy the remaining data into our partial block buffer. The memset() call ensures any extra bytes will be zero'ed out.
memset(block, 0, EVP_MAX_BLOCK_LENGTH);
memcpy(block, data + body_length, length - body_length);
// Advance the body pointer to the location of the remaining space, and calculate just how much room is still available.
body += body_length;
if ((body_length = secure_body_length(cryptex) - body_length) < 0) {
printf("The symmetric cipher overflowed!\n");
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Pass the final partially filled data block into the cipher as a complete block. The padding will be removed during the decryption process.
else if (EVP_EncryptUpdate(&cipher, body, &body_length, block, block_length) != 1) {
printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
}
// Advance the pointer, then use pointer arithmetic to calculate how much of the body buffer has been used. The complex logic is needed so that we get
// the correct status regardless of whether there was a partial data block.
body += body_length;
if ((body_length = secure_body_length(cryptex) - (body - secure_body_data(cryptex))) < 0) {
printf("The symmetric cipher overflowed!\n");
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
else if (EVP_EncryptFinal_ex(&cipher, body, &body_length) != 1) {
printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
EVP_CIPHER_CTX_cleanup(&cipher);
// Generate an authenticated hash which can be used to validate the data during decryption.
HMAC_CTX_init(&hmac);
mac_length = secure_mac_length(cryptex);
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || HMAC_Update(&hmac, secure_body_data(cryptex), secure_body_length(cryptex))
!= 1 || HMAC_Final(&hmac, secure_mac_data(cryptex), &mac_length) != 1) {
printf("Unable to generate a data authentication code. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_cleanup(&hmac);
secure_free(cryptex);
return NULL;
}
HMAC_CTX_cleanup(&hmac);
return cryptex;
}
ecies_decrypt()以十六进制形式获取私钥,并解密以前安全的缓冲区:
unsigned char * ecies_decrypt(char *key, secure_t *cryptex, size_t *length) {
HMAC_CTX hmac;
size_t key_length;
int output_length;
EVP_CIPHER_CTX cipher;
EC_KEY *user, *ephemeral;
unsigned int mac_length = EVP_MAX_MD_SIZE;
unsigned char envelope_key[SHA512_DIGEST_LENGTH], iv[EVP_MAX_IV_LENGTH], md[EVP_MAX_MD_SIZE], *block, *output;
// Simple sanity check.
if (!key || !cryptex || !length) {
printf("Invalid parameters passed in.\n");
return NULL;
}
// Make sure we are generating enough key material for the symmetric ciphers.
else if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}", SHA512_DIGEST_LENGTH / 8,
(key_length * 2) / 8);
return NULL;
}
// Convert the user's public key from hex into a full EC_KEY structure.
else if (!(user = ecies_key_create_private_hex(key))) {
printf("Invalid private key provided.\n");
return NULL;
}
// Create the ephemeral key used specifically for this block of data.
else if (!(ephemeral = ecies_key_create_public_octets(secure_key_data(cryptex), secure_key_length(cryptex)))) {
printf("An error occurred while trying to recreate the ephemeral key.\n");
EC_KEY_free(user);
return NULL;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
else if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, EC_KEY_get0_public_key(ephemeral), user, ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
printf("An error occurred while trying to compute the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// The envelope key material has been extracted, so we no longer need the user and ephemeral keys.
EC_KEY_free(ephemeral);
EC_KEY_free(user);
// Use the authenticated hash of the ciphered data to ensure it was not modified after being encrypted.
HMAC_CTX_init(&hmac);
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || HMAC_Update(&hmac, secure_body_data(cryptex), secure_body_length(cryptex))
!= 1 || HMAC_Final(&hmac, md, &mac_length) != 1) {
printf("Unable to generate the authentication code needed for validation. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_cleanup(&hmac);
return NULL;
}
HMAC_CTX_cleanup(&hmac);
// We can use the generated hash to ensure the encrypted data was not altered after being encrypted.
if (mac_length != secure_mac_length(cryptex) || memcmp(md, secure_mac_data(cryptex), mac_length)) {
printf("The authentication code was invalid! The ciphered data has been corrupted!\n");
return NULL;
}
// Create a buffer to hold the result.
output_length = secure_body_length(cryptex);
if (!(block = output = malloc(output_length + 1))) {
printf("An error occurred while trying to allocate memory for the decrypted data.\n");
return NULL;
}
// For now we use an empty initialization vector. We also clear out the result buffer just to be on the safe side.
memset(iv, 0, EVP_MAX_IV_LENGTH);
memset(output, 0, output_length + 1);
EVP_CIPHER_CTX_init(&cipher);
// Decrypt the data using the chosen symmetric cipher.
if (EVP_DecryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 || EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 || EVP_DecryptUpdate(&cipher, block,
&output_length, secure_body_data(cryptex), secure_body_length(cryptex)) != 1) {
printf("Unable to decrypt the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
block += output_length;
if ((output_length = secure_body_length(cryptex) - output_length) != 0) {
printf("The symmetric cipher failed to properly decrypt the correct amount of data!\n");
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
if (EVP_DecryptFinal_ex(&cipher, block, &output_length) != 1) {
printf("Unable to decrypt the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
EVP_CIPHER_CTX_cleanup(&cipher);
*length = secure_orig_length(cryptex);
return output;
}
我发布这个是因为我个人找不到任何其他如何使用ECC和OpenSSL库保护文件的示例。这表示值得一提的不使用OpenSSL的替代方案。一个是seccure,它遵循类似于我的例子的模式,只有它依赖于libgcrypt。由于libgcrypt不提供所需的所有底层ECC功能,因此seccure程序填补了空白并实现了libgcrypt中缺少的ECC逻辑。
另一个值得关注的程序是SKS,它使用类似的基于ECC的加密过程作为上面的示例,但没有任何外部依赖性(所以所有ECC代码都在那里供您查看)。
答案 1 :(得分:10)
ECC本身并没有真正定义任何加密/解密操作 - 建立在椭圆曲线上的算法可以。
一个例子是Elliptic-Curve Diffie-Hellman。您可以使用ECDH加密消息:
要解密:
编辑:以下是使用ECDH生成密码的基本思路。首先,我们需要定义一个密钥派生函数 - 这个函数使用SHA1哈希。
void *KDF1_SHA1(const void *in, size_t inlen, void *out, size_t *outlen)
{
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
else
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
}
这是发件人方的ECDH代码。它假定收件人的公钥已经在“recip_key”中,并且您已使用EC_KEY_check_key()验证它。它还省略了许多重要的错误检查,为了简洁起见,您肯定希望包含在生产代码中。
EC_KEY *ephemeral_key = NULL;
const EC_GROUP *group = NULL;
unsigned char buf[SHA_DIGEST_LENGTH] = { 0 };
group = EC_KEY_get0_group(recip_key);
ephemeral_key = EC_KEY_new();
EC_KEY_set_group(ephemeral_key, group);
EC_KEY_generate_key(ephemeral_key);
ECDH_compute_key(buf, sizeof buf, EC_KEY_get0_public_key(recip_key), ephemeral_key, KDF1_SHA1);
此后缓冲区'buf'包含20个字节的材料,可用于键控。这个简短的例子是基于openssl源代码发行版中“ecdhtest.c”中的代码 - 我建议看看它。
您需要使用加密消息发送ephemeral_key的公钥部分,并安全地丢弃私钥部分。数据上的MAC也是一个好主意,如果您需要超过20个字节的密钥材料,则可能需要更长的哈希值。
收件人做了类似的事情,除了它的私钥已经存在(因为发件人必须事先知道相应的公钥),并且公共密钥是从发件人那里收到的。