将二叉搜索树转换为双向链表

时间:2012-07-16 20:18:49

标签: binary-search-tree tree-traversal doubly-linked-list

最近的一次编码采访中提到了这个问题。

问:给定二叉树,编写程序将其转换为双向链表。双向链表中的节点按照之字形级别遍历形成的顺序排列

我的方法

我总是可以对树的zig-zag级别顺序进行遍历并将其存储在数组中 然后制作双链表。 但问题需要一个就地解决方案。 任何人都可以帮忙解释应该使用递归方法吗?

12 个答案:

答案 0 :(得分:13)

这是递归方法。注意,这里root将指向所形成列表的某个inbetween元素。所以,只需从根向后遍历即可获得头部。

#define NODEPTR struct node*

NODEPTR convert_to_ll(NODEPTR root){
    if(root->left == NULL && root->right == NULL)
        return root;
    NODEPTR temp = NULL;
    if(root->left != NULL){
        temp = convert_to_ll(root->left);
        while(temp->right != NULL)
            temp = temp->right;
        temp->right = root;
        root->left = temp;
    }
    if(root->right != NULL){
        temp = convert_to_ll(root->right);
        while(temp->left != NULL)
            temp = temp->left;
        temp->left = root;
        root->right = temp;
    }
    return root;
    }

答案 1 :(得分:4)

最简单的方法。在单个inorder遍历中,只有O(1)空间复杂度,我们可以实现这一点。 保留一个名为 lastPointer 的指针,并在访问每个节点后跟踪它。 使用左右

public void toll(T n) {
    if (n != null) {
        toll(n.left);
        if(lastPointer==null){
            lastPointer=n;
        }else{
            lastPointer.right=n;
            n.left=lastPointer;
            lastPointer=n;
        }
        toll(n.right);
    }
}

答案 2 :(得分:3)

C ++代码:

 Node<T> *BTtoDoublyLLZigZagOrder(Node<T> *root)
 {
        if (root == 0)
            return 0;
        if (root->mLeft == 0 && root->mRight == 0)
            return root;

        queue<Node<T> *> q;
        q.push(root);
        Node<T> *head = root;
        Node<T> *prev = 0,*curr = 0;

        while(!q.empty())
        {
            curr = q.front();
            q.pop();
            if (curr->mLeft)
                q.push(curr->mLeft);
            if (curr->mRight)
                q.push(curr->mRight);
            curr->mRight = q.front();
            curr->mLeft = prev;
            prev = curr;
        }

        return head;
 }

答案 3 :(得分:2)

stanford库链接中提到的解决方案是BST到循环DLL的完美解决方案,下面的解决方案并不完全是BST到循环DLL的转换,但是循环DLL可以通过连接DLL的末端来实现。它不完全是zig zag有序树到dll转换。

注意:此解决方案不是从BST到循环DLL的完美转换,但它是一个易于理解的黑客

JAVA代码

public Node bstToDll(Node root ){
        if(root!=null){
            Node lefthead = bstToDll(root.left); // traverse down to left 
            Node righthead = bstToDll(root.right); // traverse down to right
            Node temp = null;
            /*
             * lefthead represents head of link list created in left of node
             * righthead represents head of link list created in right
             * travel to end of left link list and add the current node in end
             */
            if(lefthead != null) {
                temp = lefthead;
                while(temp.next != null){
                    temp = temp.next;
                }
                temp.next = root;
            }else{
                lefthead = root;
            }
            root.prev = temp;
            /*
             *set the next node of current root to right head of right list
             */
            if(righthead != null){
                root.next = righthead;
                righthead.prev = root;
            }else{
                righthead = root;
            }
            return lefthead;// return left head as the head of the list added with current node
        }
        return null;
}

希望它有所帮助

答案 4 :(得分:1)

无全局变量的反向有序遍历-实现。调用时, null 将首先传递给 right 参数。最终返回值是双向链接列表的 head

public static Node ToDLL(Node node, Node right)
{
    if (node == null)
        return null;

    var rnd = ToDLL(node.Right, right);

    if (rnd != null)
    {
        node.Right = rnd;
        rnd.Left = node;
    }
    else
    {
        node.Right = right;
        if (right!= null)
            right.Left= node;
    }
    return ToDLL(node.Left, node) ?? node;
}

答案 5 :(得分:0)

我们将使用头部和尾部的两个前哨节点并对树进行有序遍历。第一次我们必须将头部链接到最小节点,反之亦然,并且还将最小节点链接到尾部,反之亦然。在第一次之后,我们只需要重新链接当前节点和尾部,直到遍历完成。在遍历后,我们将删除前哨节点并正确地重新连接头部和尾部。

public static Node binarySearchTreeToDoublyLinkedList(Node root) {

    // sentinel nodes
    Node head = new Node();
    Node tail = new Node();

    // in-order traversal
    binarySearchTreeToDoublyLinkedList(root, head, tail);

    // re-move the sentinels and re-link;
    head = head.right;
    tail = tail.left;

    if (head != null && tail != null) {
        tail.right = head;
        head.left = tail;
    }

    return head;
}

/** In-order traversal **/
private static void binarySearchTreeToDoublyLinkedList(Node currNode, Node head, Node tail) {
    if (currNode == null) {
        return;
    }


    // go left
    //

    binarySearchTreeToDoublyLinkedList(currNode.left, head, tail);

    // save right node for right traversal as we will be changing current
    // node's right to point to tail
    //

    Node right = currNode.right;

    // first time
    //

    if (head.right == null) {

        // fix head
        //

        head.right = currNode;
        currNode.left = head;

        // fix tail
        //

        tail.left = currNode;
        currNode.right = tail;

    } else {

        // re-fix tail
        //

        Node prev = tail.left;

        // fix current and tail
        //

        tail.left = currNode;
        currNode.right = tail;

        // fix current and previous
        //

        prev.right = currNode;
        currNode.left = prev;
    }

    // go right
    //

    binarySearchTreeToDoublyLinkedList(right, head, tail);
}

答案 6 :(得分:0)

node* convertToDLL(node* root, node*& head, node*& tail)
{
    //empty tree passed in, nothing to do
    if(root == NULL)
        return NULL;

    //base case
    if(root->prev == NULL && root->next == NULL)
        return root;

    node* temp = NULL;
    if(root->prev != NULL)
    {
        temp = convertToDLL(root->prev, head, tail);

        //new head of the final list, this will be the left most
        //node of the tree.
        if(head == NULL)
        {
            head=temp;
            tail=root;
        }

        //create the DLL of the left sub tree, and update t
        while(temp->next != NULL)
            temp = temp->next;
        temp->next = root;
        root->prev= temp;
        tail=root;
    }

    //create DLL for right sub tree
    if(root->next != NULL)
    {
        temp = convertToDLL(root->next, head, tail);
        while(temp->prev != NULL)
            temp = temp->prev;
        temp->prev = root;
        root->next = temp;

        //update the tail, this will be the node with the largest value in
        //right sub tree
        if(temp->next && temp->next->val > tail->val)
            tail = temp->next;
        else if(temp->val > tail->val)
            tail = temp;
    }
    return root;
}

void createCircularDLL(node* root, node*& head, node*& tail)
{
    convertToDLL(root,head,tail);

    //link the head and the tail
    head->prev=tail;
    tail->next=head;
}

int main(void)
{

    //create a binary tree first and pass in the root of the tree......
    node* head = NULL;
    node* tail = NULL;
    createCircularDLL(root, head,tail);

    return 1;
}

答案 7 :(得分:0)

struct node{
int value;
struct node *left;
struct node *right;
};
typedef struct node Node;

Node * create_node(int value){
  Node * temp =  (Node *)malloc(sizeof(Node));
  temp->value = value;
  temp->right= NULL;
  temp->left = NULL;
  return temp;
}
Node * addNode(Node *node, int value){
  if(node == NULL){
    return create_node(value);
  }
  else{
    if (node->value > value){
        node->left = addNode(node->left, value);
    }
    else{
        node->right = addNode(node->right, value);
    }
  }
  return node;
}

void treeToList(Node *node){

    Queue *queue = NULL;
    Node * last = NULL;
    if(node == NULL)
            return ;

    enqueue(&queue, node);
    while(!isEmpty(queue)){
       /* Take the first element and put 
          both left and right child on queue */
            node = front(queue);
            if(node->left)
                    enqueue(&queue, node->left);
            if(node->right)
                    enqueue(&queue, node->right);
            if(last != NULL)
                    last->right = node;
            node->left = last;
            last = node;
            dequeue(&queue);
      }
  } 
  /* Driver program for the function written above */
 int main(){
    Node *root = NULL;
   //Creating a binary tree
    root = addNode(root,30);
    root = addNode(root,20);
    root = addNode(root,15);
    root = addNode(root,25);
    root = addNode(root,40);
    root = addNode(root,37);
    root = addNode(root,45);

    treeToList(root);

    return 0;
}

可以在以下位置找到队列API的实现 http://www.algorithmsandme.com/2013/10/binary-search-tree-to-doubly-linked.html

答案 8 :(得分:0)

我们可以使用inorder遍历并跟踪以前访问过的节点。对于每个被访问节点,可以分配前一个节点右侧和当前节点。

void BST2DLL(node *root, node **prev, node **head)
{
    // Base case
    if (root == NULL) return;

    // Recursively convert left subtree
    BST2DLL(root->left, prev, head);

    if (*prev == NULL) // first iteration
        *head = root;
    else
    {
        root->left = *prev;
        (*prev)->right = root;
    }
    *prev = root; // save the prev pointer 

    // Finally convert right subtree
    BST2DLL(root->right, prev, head);
}

答案 9 :(得分:0)

我意识到这已经很老了,但是我正在为面试准备解决这个问题,并且我意识到如果你考虑每个递归函数调用,更新并返回链表的当前头部,它就会简单得多。如果你有兴趣返回头部,那么使用逆序遍历也会更好。将头部传递到递归函数也不需要静态或全局变量。这是Python代码:

def convert(n, head=None):
  if n.right:
    head = convert(n.right, head)
  if head:
    head.left = n
  n.right = head
  if n.left:
    head = convert(n.left, n)
  else:
    head = n
  return head

希望这对某人有用。

答案 10 :(得分:0)

这是Java代码。复杂度为O(N)。我还为此问题添加了一些测试用例。

#include <iostream>
#include <fstream>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
using namespace std;

#define PORT 8080

int main(int argc, char** argv) {
  int cliSockDes, readStatus;
  struct sockaddr_in serAddr;
  socklen_t serAddrLen;
  char msg[] = "Hello!!!\n";
  char buff[1024] = {0};

  //create a socket
  if ((cliSockDes = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
    perror("socket creation error...\n");
    exit(-1);
  }

  //server socket address
  serAddr.sin_family = AF_INET;
  serAddr.sin_port = htons(PORT);
  serAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

  if (sendto(cliSockDes, msg, strlen(msg), 0, (struct sockaddr*)&serAddr, sizeof(serAddr)) < 0) {
    perror("sending error...\n");
    close(cliSockDes);
    exit(-1);
  }

  serAddrLen = sizeof(serAddr);
  readStatus = recvfrom(cliSockDes, buff, 1024, 0, (struct sockaddr*)&serAddr, &serAddrLen);
  if (readStatus < 0) {
    perror("reading error...\n");
    close(cliSockDes);
    exit(-1);
  }

  cout.write(buff, readStatus);
  cout << endl;

  close(cliSockDes);
  return 0;
}

答案 11 :(得分:0)

找到有序的前驱并将左右指向当前根的前驱将为您完成这项工作。运行以下代码的时间复杂度为 O(N),并将占用辅助空间 O(H),其中 H = Height of the Tree 隐式用于递归堆栈。以下代码是使用 Python 3 编写的。

def convertToDLL(root):
    # Base check
    if root is None:
        return root

    # Converting left sub-tree to root
    if root.left:

        # Convert the left subtree
        left = convertToDLL(root.left)

        while left.right:
            left = left.right

        left.right = root
        root.left = left

    # Converting right sub-tree to root
    if root.right:

        # Convert the right subtree
        right = convertToDLL(root.right)

        while right.left:
            right = right.left

        right.left = root
        root.right = right

    return root


def bToDLL(root):
    if root is None:
        return root

    # Convert to DLL
    root = convertToDLL(root)

    while root.left:
        root = root.left

    return root


def display(head):
    # Display
    if head is None:
        return
    while head:
        print(head.data, end=" ")
        head = head.right