我有这个方程组 1 =x⊕y⊕z
1 =x⊕y⊕w
0 =x⊕w⊕z
1 =w⊕y⊕z
我试图用here来实现高斯消元来解决这个系统,用XOR代替除法,减法和乘法,但它给出了我错误的答案..正确的答案是(x,y,z,w)=(0,1,0,0)我做错了什么?
public static void ComputeCoefficents(byte[,] X, byte[] Y)
{
int I, J, K, K1, N;
N = Y.Length;
for (K = 0; K < N; K++)
{
K1 = K + 1;
for (I = K; I < N; I++)
{
if (X[I, K] != 0)
{
for (J = K1; J < N; J++)
{
X[I, J] /= X[I, K];
}
//Y[I] /= X[I, K];
Y[I] ^= X[I, K];
}
}
for (I = K1; I < N; I++)
{
if (X[I, K] != 0)
{
for (J = K1; J < N; J++)
{
X[I, J] ^= X[K, J];
}
Y[I] ^= Y[K];
}
}
}
for (I = N - 2; I >= 0; I--)
{
for (J = N - 1; J >= I + 1; J--)
{
//Y[I] -= AndOperation(X[I, J], Y[J]);
Y[I] ^= (byte)(X[I, J]* Y[J]);
}
}
}
答案 0 :(得分:1)
我认为你正试图为此应用高斯消除模2。
一般来说,如果你的方程是
形式,你可以做高斯消元mod ka_1 * x + b_1 * y + c_1 * z = d_1
a_2 * x + b_2 * y + c_2 * z = d_2
a_3 * x + b_3 * y + c_3 * z = d_3
a_4 * x + b_4 * y + c_4 * z = d_4
在Z2 *中是and
而+是xor
,所以你可以使用Gausian消除来求解形式的方程式
x (xor) y (xor) z = 1
x (xor) y (xor) w = 1
x (xor) z (xor) w = 0
y (xor) z (xor) w = 1
让我们手动使用Gausian消除这个等式。
相应的增广矩阵是:
1 1 1 0 | 1
1 1 0 1 | 1
1 0 1 1 | 0
0 1 1 1 | 1
1 1 1 0 | 1
0 0 1 1 | 0 (R2 = R2 + R1)
0 1 0 1 | 1 (R3 = R3 + R1)
0 1 1 1 | 1
1 1 1 0 | 1
0 1 1 1 | 1 (R2 = R4)
0 1 0 1 | 1
0 0 1 1 | 0 (R4 = R2)
1 0 0 1 | 0 (R1 = R1 + R2)
0 1 1 1 | 1
0 0 1 0 | 0 (R3 = R3 + R2)
0 0 1 1 | 0
1 0 0 1 | 0
0 1 0 1 | 1 (R2 = R2 + R3)
0 0 1 0 | 0
0 0 0 1 | 0 (R4 = R4 + R3)
1 0 0 0 | 0 (R1 = R1 + R4)
0 1 0 0 | 1 (R2 = R2 + R4)
0 0 1 0 | 0
0 0 0 1 | 0
给出(x,y,z,w)=(0,1,0,0)的解。
但这需要行旋转 - 我在你的代码中看不到。
在您的代码中还有一些浮动和划分,可能不需要在那里。我希望代码看起来像这样:(你需要修复TODO)。
public static void ComputeCoefficents(byte[,] X, byte[] Y) {
int I, J, K, K1, N;
N = Y.Length;
for (K = 0; K < N; K++) {
//First ensure that we have a non-zero entry in X[K,K]
if( X[K,K] == 0 ) {
for(int i = 0; i<N ; ++i ) {
if(X[i,K] != 0 ) {
for( ... ) //TODO: A loop to swap the entries
//TODO swap entries in Y too
}
}
if( X[K,K] == 0 ) {
// TODO: Handle the case where we have a zero column
// - for now we just move on to the next column
// - This means we have no solutions or multiple
// solutions
continue
}
// Do full row elimination.
for( int I = 0; I<N; ++I)
{
if( I!=K ){ //Don't self eliminate
if( X[I,K] ) {
for( int J=K; J<N; ++J ) { X[I,J] = X[I,J] ^ X[K,J]; }
Y[J] = Y[J] ^ Y[K];
}
}
}
}
//Now assuming we didnt hit any zero columns Y should be our solution.
}