我有两个numpy数组1D,一个是datetime64格式的测量时间,例如:
array([2011-11-15 01:08:11, 2011-11-16 02:08:04, ..., 2012-07-07 11:08:00], dtype=datetime64[us])
和其他具有整数数据的长度和尺寸相同的数组
我想在matplotlib时间与数据中制作一个图。如果我直接输入数据,这就是我得到的:
plot(timeSeries, data)
有没有办法让时间更自然?例如,在这种情况下,月/年可以没事。
编辑:
我试过Gustav Larsson的建议,但是我收到了一个错误:
Out[128]:
[<matplotlib.lines.Line2D at 0x419aad0>]
---------------------------------------------------------------------------
OverflowError Traceback (most recent call last)
/usr/lib/python2.7/dist-packages/IPython/zmq/pylab/backend_inline.pyc in show(close)
100 try:
101 for figure_manager in Gcf.get_all_fig_managers():
--> 102 send_figure(figure_manager.canvas.figure)
103 finally:
104 show._to_draw = []
/usr/lib/python2.7/dist-packages/IPython/zmq/pylab/backend_inline.pyc in send_figure(fig)
209 """
210 fmt = InlineBackend.instance().figure_format
--> 211 data = print_figure(fig, fmt)
212 # print_figure will return None if there's nothing to draw:
213 if data is None:
/usr/lib/python2.7/dist-packages/IPython/core/pylabtools.pyc in print_figure(fig, fmt)
102 try:
103 bytes_io = BytesIO()
--> 104 fig.canvas.print_figure(bytes_io, format=fmt, bbox_inches='tight')
105 data = bytes_io.getvalue()
106 finally:
/usr/lib/pymodules/python2.7/matplotlib/backend_bases.pyc in print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)
1981 orientation=orientation,
1982 dryrun=True,
-> 1983 **kwargs)
1984 renderer = self.figure._cachedRenderer
1985 bbox_inches = self.figure.get_tightbbox(renderer)
/usr/lib/pymodules/python2.7/matplotlib/backends/backend_agg.pyc in print_png(self, filename_or_obj, *args, **kwargs)
467
468 def print_png(self, filename_or_obj, *args, **kwargs):
--> 469 FigureCanvasAgg.draw(self)
470 renderer = self.get_renderer()
471 original_dpi = renderer.dpi
/usr/lib/pymodules/python2.7/matplotlib/backends/backend_agg.pyc in draw(self)
419
420 try:
--> 421 self.figure.draw(self.renderer)
422 finally:
423 RendererAgg.lock.release()
/usr/lib/pymodules/python2.7/matplotlib/artist.pyc in draw_wrapper(artist, renderer, *args, **kwargs)
53 def draw_wrapper(artist, renderer, *args, **kwargs):
54 before(artist, renderer)
---> 55 draw(artist, renderer, *args, **kwargs)
56 after(artist, renderer)
57
/usr/lib/pymodules/python2.7/matplotlib/figure.pyc in draw(self, renderer)
896 dsu.sort(key=itemgetter(0))
897 for zorder, a, func, args in dsu:
--> 898 func(*args)
899
900 renderer.close_group('figure')
/usr/lib/pymodules/python2.7/matplotlib/artist.pyc in draw_wrapper(artist, renderer, *args, **kwargs)
53 def draw_wrapper(artist, renderer, *args, **kwargs):
54 before(artist, renderer)
---> 55 draw(artist, renderer, *args, **kwargs)
56 after(artist, renderer)
57
/usr/lib/pymodules/python2.7/matplotlib/axes.pyc in draw(self, renderer, inframe)
1995
1996 for zorder, a in dsu:
-> 1997 a.draw(renderer)
1998
1999 renderer.close_group('axes')
/usr/lib/pymodules/python2.7/matplotlib/artist.pyc in draw_wrapper(artist, renderer, *args, **kwargs)
53 def draw_wrapper(artist, renderer, *args, **kwargs):
54 before(artist, renderer)
---> 55 draw(artist, renderer, *args, **kwargs)
56 after(artist, renderer)
57
/usr/lib/pymodules/python2.7/matplotlib/axis.pyc in draw(self, renderer, *args, **kwargs)
1039 renderer.open_group(__name__)
1040
-> 1041 ticks_to_draw = self._update_ticks(renderer)
1042 ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer)
1043
/usr/lib/pymodules/python2.7/matplotlib/axis.pyc in _update_ticks(self, renderer)
929
930 interval = self.get_view_interval()
--> 931 tick_tups = [ t for t in self.iter_ticks()]
932 if self._smart_bounds:
933 # handle inverted limits
/usr/lib/pymodules/python2.7/matplotlib/axis.pyc in iter_ticks(self)
876 Iterate through all of the major and minor ticks.
877 """
--> 878 majorLocs = self.major.locator()
879 majorTicks = self.get_major_ticks(len(majorLocs))
880 self.major.formatter.set_locs(majorLocs)
/usr/lib/pymodules/python2.7/matplotlib/dates.pyc in __call__(self)
747 def __call__(self):
748 'Return the locations of the ticks'
--> 749 self.refresh()
750 return self._locator()
751
/usr/lib/pymodules/python2.7/matplotlib/dates.pyc in refresh(self)
756 def refresh(self):
757 'Refresh internal information based on current limits.'
--> 758 dmin, dmax = self.viewlim_to_dt()
759 self._locator = self.get_locator(dmin, dmax)
760
/usr/lib/pymodules/python2.7/matplotlib/dates.pyc in viewlim_to_dt(self)
528 def viewlim_to_dt(self):
529 vmin, vmax = self.axis.get_view_interval()
--> 530 return num2date(vmin, self.tz), num2date(vmax, self.tz)
531
532 def _get_unit(self):
/usr/lib/pymodules/python2.7/matplotlib/dates.pyc in num2date(x, tz)
287 """
288 if tz is None: tz = _get_rc_timezone()
--> 289 if not cbook.iterable(x): return _from_ordinalf(x, tz)
290 else: return [_from_ordinalf(val, tz) for val in x]
291
/usr/lib/pymodules/python2.7/matplotlib/dates.pyc in _from_ordinalf(x, tz)
201 if tz is None: tz = _get_rc_timezone()
202 ix = int(x)
--> 203 dt = datetime.datetime.fromordinal(ix)
204 remainder = float(x) - ix
205 hour, remainder = divmod(24*remainder, 1)
OverflowError: signed integer is greater than maximum
这可能是个错误吗?或者我错过了什么。我也尝试过简单的事情:
import matplotlib.pyplot as plt
import numpy as np
dates=np.array(["2011-11-13", "2011-11-14", "2011-11-15", "2011-11-16", "2011-11-19"], dtype='datetime64[us]')
data=np.array([1, 2, 3, 4, 5])
plt.plot_date(dates, data)
plt.show()
我仍然收到此错误:
OverflowError: signed integer is greater than maximum
我不明白我做错了什么。 ipython 0.13,matplotlib 1.1,Ubuntu 12.04 x64。
最终编辑:
似乎matplotlib不支持dtype=datetime64
,因此我需要将timeSeries
转换为来自datetime.datetime
的普通datetime
。
答案 0 :(得分:21)
from datetime import datetime
a=np.datetime64('2002-06-28').astype(datetime)
plot_date(a,2)
答案 1 :(得分:2)
您可能想尝试一下:
plot_date(timeSeries, data)
默认情况下,x轴将被视为日期轴,y将被视为常规轴。这可以定制。
答案 2 :(得分:1)
Matplotlib> = 2.2本机支持绘制datetime64数组。参见https://github.com/matplotlib/matplotlib/blob/master/doc/users/prev_whats_new/whats_new_2.2.rst#support-for-numpydatetime64:
Matplotlib在很长一段时间内一直支持datetime.datetime日期 matplotlib.dates。现在,我们也支持numpy.datetime64日期。 可以使用dateime.datetime的任何地方,可以使用numpy.datetime64 用过的。例如:
time = np.arange('2005-02-01', '2005-02-02', dtype='datetime64[h]') plt.plot(time)
答案 3 :(得分:0)
我遇到了类似的问题。有时,日期轴正确地绘制了我的 np.datetim64 数组,而有时它没有使用相同的时间数组,而是在日期轴上给出一些无法识别的整数值。
原因是我在第一次使用对数刻度后设置了 ax.xscale('linear')。删除 ax.xscale('linear') 解决了这个问题。我了解到,线性轴不是日期时间轴。