根据MINUIT进行Python参数转换

时间:2012-07-03 13:28:37

标签: python constraints scipy bounds

我正在为基于scipy的optimize.leastsq的2D数据编写一个自动曲线拟合程序,它可以工作。然而,当添加许多曲线并且起始值略微偏离时,我得到非物理结果(例如负幅度)。

我发现这篇文章Scipy: bounds for fitting parameter(s) when using optimize.leastsq,并试图根据Cern的Minuit使用参数转换。在上面提到的问题中,有人提供了一些python代码的链接。

code.google.com/p/nmrglue/source/browse/trunk/nmrglue/analysis/leastsqbound.py

我写了这个最小的工作示例(扩展代码)

"""
http://code.google.com/p/nmrglue/source/browse/trunk/nmrglue/analysis/leastsqbound.py
Constrained multivariate Levenberg-Marquardt optimization
"""

from scipy.optimize import leastsq
import numpy as np
import matplotlib.pyplot as plt #new

def internal2external_grad(xi, bounds):
    """ 
    Calculate the internal to external gradiant

    Calculates the partial of external over internal

    """

    ge = np.empty_like(xi)

    for i, (v, bound) in enumerate(zip(xi, bounds)):

        a = bound[0]    # minimum
        b = bound[1]    # maximum

        if a == None and b == None:    # No constraints
            ge[i] = 1.0

        elif b == None:      # only min
            ge[i] = v / np.sqrt(v ** 2 + 1)

        elif a == None:      # only max
            ge[i] = -v / np.sqrt(v ** 2 + 1)

        else:       # both min and max
            ge[i] = (b - a) * np.cos(v) / 2.

    return ge

def i2e_cov_x(xi, bounds, cov_x):

    grad = internal2external_grad(xi, bounds)
    grad = grad = np.atleast_2d(grad)
    return np.dot(grad.T, grad) * cov_x


def internal2external(xi, bounds):
    """ Convert a series of internal variables to external variables"""

    xe = np.empty_like(xi)

    for i, (v, bound) in enumerate(zip(xi, bounds)):

        a = bound[0]    # minimum
        b = bound[1]    # maximum

        if a == None and b == None:    # No constraints
            xe[i] = v

        elif b == None:      # only min
            xe[i] = a - 1. + np.sqrt(v ** 2. + 1.)

        elif a == None:      # only max
            xe[i] = b + 1. - np.sqrt(v ** 2. + 1.)

        else:       # both min and max
            xe[i] = a + ((b - a) / 2.) * (np.sin(v) + 1.)

    return xe

def external2internal(xe, bounds):
    """ Convert a series of external variables to internal variables"""

    xi = np.empty_like(xe)

    for i, (v, bound) in enumerate(zip(xe, bounds)):

        a = bound[0]    # minimum
        b = bound[1]    # maximum

        if a == None and b == None: # No constraints
            xi[i] = v

        elif b == None:     # only min
            xi[i] = np.sqrt((v - a + 1.) ** 2. - 1)

        elif a == None:     # only max
            xi[i] = np.sqrt((b - v + 1.) ** 2. - 1)

        else:   # both min and max
            xi[i] = np.arcsin((2.*(v - a) / (b - a)) - 1.)

    return xi

def err(p, bounds, efunc, args):

    pe = internal2external(p, bounds)    # convert to external variables
    return efunc(pe, *args)

def calc_cov_x(infodic, p):
    """
    Calculate cov_x from fjac, ipvt and p as is done in leastsq
    """

    fjac = infodic['fjac']
    ipvt = infodic['ipvt']
    n = len(p)

    # adapted from leastsq function in scipy/optimize/minpack.py
    perm = np.take(np.eye(n), ipvt - 1, 0)
    r = np.triu(np.transpose(fjac)[:n, :])
    R = np.dot(r, perm)
    try:
        cov_x = np.linalg.inv(np.dot(np.transpose(R), R))
    except LinAlgError:
        cov_x = None
    return cov_x


def leastsqbound(func, x0, bounds, args = (), **kw):
    """
    Constrained multivariant Levenberg-Marquard optimization

    Minimize the sum of squares of a given function using the 
    Levenberg-Marquard algorithm. Contraints on parameters are inforced using 
    variable transformations as described in the MINUIT User's Guide by
    Fred James and Matthias Winkler.

    Parameters:

    * func      functions to call for optimization.
    * x0        Starting estimate for the minimization.
    * bounds    (min,max) pair for each element of x, defining the bounds on
                that parameter.  Use None for one of min or max when there is
                no bound in that direction.
    * args      Any extra arguments to func are places in this tuple.

    Returns: (x,{cov_x,infodict,mesg},ier)

    Return is described in the scipy.optimize.leastsq function.  x and con_v  
    are corrected to take into account the parameter transformation, infodic 
    is not corrected.

    Additional keyword arguments are passed directly to the 
    scipy.optimize.leastsq algorithm. 

    """
    # check for full output
    if "full_output" in kw and kw["full_output"]:
        full = True
    else:
        full = False

    # convert x0 to internal variables
    i0 = external2internal(x0, bounds)

    # perfrom unconstrained optimization using internal variables
    r = leastsq(err, i0, args = (bounds, func, args), **kw)

    # unpack return convert to external variables and return
    if full:
        xi, cov_xi, infodic, mesg, ier = r
        xe = internal2external(xi, bounds)
        cov_xe = i2e_cov_x(xi, bounds, cov_xi)
        # XXX correct infodic 'fjac','ipvt', and 'qtf' 
        return xe, cov_xe, infodic, mesg, ier

    else:
        xi, ier = r
        xe = internal2external(xi, bounds)
        return xe, ier


# new below

def _evaluate(x, p):
    '''
    Linear plus Lorentzian curve
    p = list with three parameters ([a, b, I, Pos, FWHM])
    '''
    return p[0] + p[1] * x + p[2] / (1 + np.power((x - p[3]) / (p[4] / 2), 2))


def residuals(p, y, x):

    err = _evaluate(x, p) - y
    return err


if __name__ == '__main__':
    data = np.loadtxt('constraint.dat') # read data

    p0 = [5000., 0., 500., 2450., 3] #Start values for a, b, I, Pos, FWHM
    constraints = [(4000., None), (-50., 20.), (0., 2000.), (2400., 2451.), (None, None)]

    p, res = leastsqbound(residuals, p0, constraints, args = (data[:, 1], data[:, 0]), maxfev = 20000)
    print p, res

    plt.plot(data[:, 0], data[:, 1]) # plot data
    plt.plot(data[:, 0], _evaluate(data[:, 0], p0)) # plot start values
    plt.plot(data[:, 0], _evaluate(data[:, 0], p)) # plot fit values
    plt.show()

这是情节输出,其中绿色是起始条件,红色是拟合结果: plot results

这是正确的用法吗?如果超出边界,External2内部转换只会抛出一个nan。 leastsq似乎能够处理这个?

我上传了拟合数据here。只需粘贴到名为constraint.dat的文本文件中。

3 个答案:

答案 0 :(得分:0)

已经存在受欢迎的受限Lev-Mar代码

http://adsabs.harvard.edu/abs/2009ASPC..411..251M

在python中实现

http://code.google.com/p/astrolibpy/source/browse/mpfit/mpfit.py

我建议不要重新发明轮子。

答案 1 :(得分:0)

按照sega_sai的回答,我使用mpfit.py

提出了这个最小的工作示例
import matplotlib.pyplot as plt
from mpfit import mpfit
import numpy as np

def _evaluate(p, x):
    '''
    Linear plus Lorentzian curve
    p = list with three parameters ([a, b, I, Pos, FWHM])
    '''
    return p[0] + p[1] * x + p[2] / (1 + np.power((x - p[3]) / (p[4] / 2), 2))

def residuals(p, fjac = None, x = None, y = None, err = None):
    status = 0
    error = _evaluate(p, x) - y
    return [status, error / err]

if __name__ == '__main__':
    data = np.loadtxt('constraint.dat') # read data
    x = data[:, 0]
    y = data[:, 1]
    err = 0 * np.ones(y.shape, dtype = 'float64')
    parinfo = [{'value':5000., 'fixed':0, 'limited':[0, 0], 'limits':[0., 0.], 'parname':'a'},
               {'value':0., 'fixed':0, 'limited':[0, 0], 'limits':[0., 0.], 'parname':'b'},
               {'value':500., 'fixed':0, 'limited':[0, 0], 'limits':[0., 0.], 'parname':'I'},
               {'value':2450., 'fixed':0, 'limited':[0, 0], 'limits':[0., 0.], 'parname':'Pos'},
               {'value':3., 'fixed':0, 'limited':[0, 0], 'limits':[0., 0.], 'parname':'FWHM'}]
    fa = {'x':x, 'y':y, 'err':err}
    m = mpfit(residuals, parinfo = parinfo, functkw = fa)
    print m

拟合结果如下:

mpfit.py: 3714.97545, 0.484193283, 2644.47271, 2440.13385, 22.1898496
leastsq:  3714.97187, 0.484194545, 2644.46890, 2440.13391, 22.1899295

结论:两种方法都有效,都允许约束。但是因为mpfit来自一个非常成熟的来源我更信任它。如果可用的话,它还会尊重错误值。

答案 2 :(得分:0)

尝试lmfit-py - https://github.com/newville/lmfit-py

  1. 它还通过scipy.optimize.leastsq使用Levenberg-Marquardt(LM)算法。不确定的就好了。

  2. 它不仅可以使用边界限制拟合参数,还可以在不修改拟合函数的情况下使用数学表达式约束拟合参数。

  3. 忘记在拟合函数中使用那些可怕的p [0],p [1] ....只需通过Parameters类使用拟合参数的名称。