将一个元组拆分为Pig中的多个元组

时间:2012-07-02 03:01:10

标签: hadoop apache-pig

我喜欢从单个元组生成多个元组。我的意思是: 我有文件中包含以下数据。

>> cat data
ID | ColumnName1:Value1 | ColumnName2:Value2

所以我通过以下命令

加载它
grunt >> A = load '$data' using PigStorage('|');    
grunt >> dump A;    
(ID,ColumnName1:Value1,ColumnName2:Value2) 

现在我想把这个元组分成两个元组。

(ID, ColumnName1, Value1)
(ID, ColumnName2, Value2)

我可以将UDF与foreach一起使用并生成。有些事情如下吗?

grunt >> foreach A generate SOMEUDF(A)

编辑:

输入元组:(id1,column1,column2) 输出:两个元组(id1,column1)和(id2,column2)所以它是List还是应该返回一个Bag?

public class SPLITTUPPLE extends EvalFunc <List<Tuple>>
{
    public List<Tuple> exec(Tuple input) throws IOException {
        if (input == null || input.size() == 0)
            return null;
        try{
            // not sure how whether I can create tuples on my own. Looks like I should use TupleFactory.
            // return list of tuples.
        }catch(Exception e){
            throw WrappedIOException.wrap("Caught exception processing input row ", e);
        }
    }
}

这种做法是否正确?

3 个答案:

答案 0 :(得分:10)

您可以编写UDF或使用带内置函数的PIG脚本。

例如:

-- data should be chararray, PigStorage('|') return bytearray which will not work for this example
inpt = load '/pig_fun/input/single_tuple_to_multiple.txt' as (line:chararray);

-- split by | and create a row so we can dereference it later
splt = foreach inpt generate FLATTEN(STRSPLIT($0, '\\|')) ;

-- first column is id, rest is converted into a bag and flatten it to make rows
id_vals = foreach splt generate $0 as id, FLATTEN(TOBAG(*)) as value;
-- there will be records with (id, id), but id should not have ':'
id_vals = foreach id_vals generate id, INDEXOF(value, ':') as p, STRSPLIT(value, ':', 2) as vals;
final = foreach (filter id_vals by p != -1) generate id, FLATTEN(vals) as (col, val);
dump final;

测试INPUT:

1|c1:11:33|c2:12
234|c1:21|c2:22
33|c1:31|c2:32
345|c1:41|c2:42

<强>输出

(1,c1,11:33)
(1,c2,12)
(234,c1,21)
(234,c2,22)
(33,c1,31)
(33,c2,32)
(345,c1,41)
(345,c2,42)

我希望它有所帮助。

干杯。

答案 1 :(得分:6)

这是UDF版本。我更喜欢退回BAG:

import java.io.IOException;

import org.apache.pig.EvalFunc;
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.DataType;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.FrontendException;
import org.apache.pig.impl.logicalLayer.schema.Schema;

/**
 * Converts input chararray "ID|ColumnName1:Value1|ColumnName2:Value2|.." into a bag 
 * {(ID, ColumnName1, Value1), (ID, ColumnName2, Value2), ...}
 *  
 *  Default rows separator is '|' and key value separator is ':'. 
 *  In this implementation white spaces around separator characters are not removed.
 *  ID can be made of any character (including sequence of white spaces). 
 * @author 
 *
 */
public class TupleToBagColumnValuePairs extends EvalFunc<DataBag> {

    private static final TupleFactory tupleFactory = TupleFactory.getInstance();
    private static final BagFactory bagFactory = BagFactory.getInstance();

    //Row separator character. Default is '|'.
    private String rowsSeparator;
    //Column value separator character. Default i
    private String columnValueSeparator;

    public TupleToBagColumnValuePairs() {
        this.rowsSeparator = "\\|";
        this.columnValueSeparator = ":";
    }

    public TupleToBagColumnValuePairs(String rowsSeparator, String keyValueSeparator) {
        this.rowsSeparator = rowsSeparator;
        this.columnValueSeparator = keyValueSeparator;
    }

    /**
     * Creates a tuple with 3 fields (id:chararray, column:chararray, value:chararray)
     * @param outputBag Output tuples (id, column, value) are added to this bag
     * @param id
     * @param column
     * @param value
     * @throws ExecException
     */
    protected void addTuple(DataBag outputBag, String id, String column, String value) throws ExecException {
        Tuple outputTuple = tupleFactory.newTuple();
        outputTuple.append(id);
        outputTuple.append(column);
        outputTuple.append( value);
        outputBag.add(outputTuple);
    }

    /**
     * Takes column{separator}value from splitInputLine, splits id into column value and adds them to the outputBag as (id, column, value)
     * @param outputBag Output tuples (id, column, value) should be added to this bag
     * @param id 
     * @param splitInputLine format column{separator}value, which start from index 1
     * @throws ExecException
     */
    protected void parseColumnValues(DataBag outputBag, String id,
            String[] splitInputLine) throws ExecException {
        for (int i = 1; i < splitInputLine.length; i++) {
            if (splitInputLine[i] != null) {
                int columnValueSplitIndex = splitInputLine[i].indexOf(this.columnValueSeparator);
                if (columnValueSplitIndex != -1) {
                    String column = splitInputLine[i].substring(0, columnValueSplitIndex);
                    String value = null;
                    if (columnValueSplitIndex + 1 < splitInputLine[i].length()) {
                        value = splitInputLine[i].substring(columnValueSplitIndex + 1);
                    }
                    this.addTuple(outputBag, id, column, value);
                } else {
                    String column = splitInputLine[i];
                    this.addTuple(outputBag, id, column, null);
                }
            }
        }
    }

    /**
     * input - contains only one field of type chararray, which will be split by '|'
     * All inputs that are: null or of length 0 are ignored.
     */
    @Override
    public DataBag exec(Tuple input) throws IOException {
        if (input == null || input.size() != 1 || input.isNull(0)) {
            return null;
        }

        String inputLine = (String)input.get(0);
        String[] splitInputLine = inputLine.split(this.rowsSeparator, -1);

        if (splitInputLine.length > 1 && splitInputLine[0].length() > 0) {
            String id = splitInputLine[0];
            DataBag outputBag = bagFactory.newDefaultBag();            
            if (splitInputLine.length == 1) { // there is just an id in the line
                this.addTuple(outputBag, id, null, null);
            } else {
                this.parseColumnValues(outputBag, id, splitInputLine);
            }


           return outputBag; 
        }
        return null;
    }

    @Override
    public Schema outputSchema(Schema input) {
        try {
            if (input.size() != 1) {
                throw new RuntimeException("Expected input to have only one field");
            }

            Schema.FieldSchema inputFieldSchema = input.getField(0);
            if (inputFieldSchema.type != DataType.CHARARRAY) {
                throw new RuntimeException("Expected a CHARARRAY as input");
            }

            Schema tupleSchema = new Schema();
            tupleSchema.add(new Schema.FieldSchema("id", DataType.CHARARRAY));
            tupleSchema.add(new Schema.FieldSchema("column", DataType.CHARARRAY));
            tupleSchema.add(new Schema.FieldSchema("value", DataType.CHARARRAY));

            return new Schema(new Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(), input), tupleSchema, DataType.BAG));
        } catch (FrontendException exx) {
            throw new RuntimeException(exx);
        }
    }

}

以下是它在PIG中的使用方法:

register 'path to the jar';
define IdColumnValue myPackage.TupleToBagColumnValuePairs();

inpt = load '/pig_fun/input/single_tuple_to_multiple.txt' as (line:chararray);
result = foreach inpt generate FLATTEN(IdColumnValue($0)) as (id1, c2, v2);
dump result;

使用行李编写UDF的好灵感见DataFu source code by LinkedIn

答案 2 :(得分:0)

您可以在STRSPLIT的输出上使用TransposeTupleToBag(来自DataFu lib的UDF)来获取包,然后将包放在FLATTEN中,以便为每个原始列创建单独的行。