对R来说相对较新,所以要提前道歉,因为无能为力。
多年来,我正在一个国家/地区的多个站点上处理几个(非常大的)观测数据集。我需要计算在第x周中提交观察的站点总数中已记录特定物种的站点的比例(基本上是存在/不存在数据)。我有一个数据集,提供每个人的详细信息物种观察,以及每周观测总数的另一个。因此,我需要一些功能来计算该周记录物种的站点数量,然后将其除以记录同一周内任何物种观测值的站点总数。 观察结果记录为一周(1-53)和一年(1995-2011)。
species.data的例子(为了便于粘贴而列为csv):
SITE_ID, SPECIES, WEEKNO, YEAR
1289, Attenb., 1, 1995
1538, Attenb., 1, 1995
1894, Attenb., 2, 1995
1286, Attenb., 4, 1995
1238, Attenb., 7, 1995
1892, Attenb., 7, 1995
total.obs.data的例子:
YEAR, WEEKNO, TOTALOBS,
1995, 1, 100
1995, 2, 780
1995, 3, 100
1995, 4, 189
1995, 5, 382
1995, 6, 100
1995, 7, 899
1995, 8, 129
(所以我在1995年的第1周我不会那么比例是2/100,能够构建GLM或GAM)
答案 0 :(得分:0)
让我试一试,同时注意上述评论中已经陈述的问题的所有限制
#Create the data frame with the total observations
tot.obs<-data.frame(year=rep(1995,10), weekno=1:10, obs=floor(runif(n=10,80,100)))
#Create the variable week-year
tot.obs$week.year<-paste(tot.obs$week,tot.obs$year,sep="-")
#Create the data frame species observations
species.data<-data.frame(site=factor(floor(runif(n=5,2000,3000))), week=c(1,1,2,4,7), year=rep(1995,5),observ=rep(1,5))
species.data$week.year<-paste(species.data$week,species.data$year,sep="-")
species.data$total.obs<-NA
#Match the total observations form the tot.obs data frame to the species data frame. You can probably do it much faster but here is a "quick and dirty way"
for (i in 1:dim(species.data)[1]){
species.data$total.obs[i]<-tot.obs$obs[tot.obs$week.year==species.data$week.year[i]]
}
#Calculates the percentage of the total observation that each center contributes
species.data$per.obs<-species.data$observ/ species.data$total.obs
#For the presentation of the data, reshape is your friend
library(reshape)
species.data.melt<-melt(species.data,id.vars=c("site","week.year"), measure.vars="per.obs")
cast(species.data.melt,site~week.year, fun.aggregate=sum)
site 1-1995 2-1995 4-1995 7-1995
1 2436 0.00000000 0.00000000 0.01010101 0.00000000
2 2501 0.00000000 0.01123596 0.00000000 0.00000000
3 2590 0.00000000 0.00000000 0.00000000 0.01123596
4 2608 0.01030928 0.00000000 0.00000000 0.00000000
5 2942 0.01030928 0.00000000 0.00000000 0.00000000
否则,如果您对每个中心的观察不感兴趣,那么事情会更容易:
species.data.melt2<-melt(species.data,id.vars=c("week.year"), measure.vars="observ")
species.obs.total<-data.frame(cast(species.data.melt2,week.year~value, fun.aggregate=sum))
colnames(species.obs.total)[2]<-"aggregated.total"
species.obs.total$total<-NA
for (i in 1:dim(species.obs.total)[1]){
species.obs.total$total[i]<-tot.obs$obs[tot.obs$week.year==species.obs.total$week.year[i]]
}
species.obs.total$perc<-species.obs.total$aggregated.total/ species.obs.total$total
species.obs.total
week.year aggregated.total total perc
1 1-1995 2 97 0.02061856
2 2-1995 1 89 0.01123596
3 4-1995 1 99 0.01010101
4 7-1995 1 89 0.01123596
答案 1 :(得分:0)
目前数据过于简单,无法支持测试的复杂性。 xtabs
函数创建一个矩阵对象,可以除以该周的总数:
> xtblspec <- xtabs( ~ SPECIES+ SITE_ID +WEEKNO + YEAR , data=dat)
> xtblspec
, , WEEKNO = 1, YEAR = 1995
SITE_ID
SPECIES 1238 1286 1289 1538 1892 1894
Attenb. 0 0 1 1 0 0
, , WEEKNO = 2, YEAR = 1995
SITE_ID
SPECIES 1238 1286 1289 1538 1892 1894
Attenb. 0 0 0 0 0 1
, , WEEKNO = 4, YEAR = 1995
SITE_ID
SPECIES 1238 1286 1289 1538 1892 1894
Attenb. 0 1 0 0 0 0
, , WEEKNO = 7, YEAR = 1995
SITE_ID
SPECIES 1238 1286 1289 1538 1892 1894
Attenb. 1 0 0 0 1 0
#-------------
weekobs <- totobs[ match( as.numeric(dimnames(xtblspec[ 1, , ,])$WEEKNO ) ,totobs$WEEKNO) ,
"TOTALOBS"]
#[1] 100 780 189 899
要正确设置特定观察矩阵,以便矩阵分区正常工作,您需要将WEEKNO作为第一维:
xtblspec <- xtabs( ~ WEEKNO +SPECIES+ SITE_ID + YEAR , data=dat)
> xtblspec/weekobs
, , SITE_ID = 1238, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.000000000
2 0.000000000
4 0.000000000
7 0.001112347
, , SITE_ID = 1286, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.000000000
2 0.000000000
4 0.005291005
7 0.000000000
, , SITE_ID = 1289, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.010000000
2 0.000000000
4 0.000000000
7 0.000000000
, , SITE_ID = 1538, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.010000000
2 0.000000000
4 0.000000000
7 0.000000000
, , SITE_ID = 1892, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.000000000
2 0.000000000
4 0.000000000
7 0.001112347
, , SITE_ID = 1894, YEAR = 1995
SPECIES
WEEKNO Attenb.
1 0.000000000
2 0.001282051
4 0.000000000
7 0.000000000