我正在为一个项目编写一个K-Means集群,该项目使用集群来识别对象,因此机器人几乎可以自由地自动化。相机基本上可以拍摄半秒钟的照片 速率,存储在' blob'像素。该blob被发送到数据挖掘算法k-means,用于识别“阴影”。将对象作为一个簇,因此可以对机器人进行编程以避开这些区域。我发布了我的k-means代码。它是用python编写的。
import sys, math, random
class Point:
def __init__(self, coords, reference=None):
self.coords = coords
self.n = len(coords)
self.reference = reference
def __repr__(self):
return str(self.coords)
class Cluster:
def __init__(self, points):
if len(points) == 0:
raise Exception("ILLEGAL: empty cluster")
self.points = points
self.n = points[0].n # make the first element to be the number of clusters
for p in points:
if p.n != self.n:
raise Exception("ILLEGAL: wrong dimension")
self.centroid = self.calculateCentroid()
def __repr__(self):
return str(self.points)
def update(self, points):
old_centroid = self.centroid
self.points = points
self.centroid = self.calculateCentroid()
return getDistance(old_centroid, self.centroid)
def calculateCentroid(self):
reduce_coord = lambda i:reduce(lambda x,p : x + p.coords[i], self.points, 0.0)
if len(self.points) == 0:
print "Dividing by 0"
self.points = [1]
centroid_coords = [reduce_coord(i) / len(self.points) for i in range(self.n)]
return Point(centroid_coords)
def kmeans(points, k, cutoff):
initial = random.sample(points, k)
clusters = [Cluster([p]) for p in initial]
print clusters
while True:
lists = [ [] for c in clusters]
for p in points:
smallest_distance = getDistance(p, clusters[0].centroid)
index = 0
for i in range(len(clusters[1:])):
distance = getDistance(p, clusters[i+1].centroid)
if distance < smallest_distance:
smallest_distance = distance
index = i+1
lists[index].append(p)
biggest_shift = 0.0
for i in range(len(clusters)):
shift = clusters[i].update(lists[i])
biggest_shift = max(biggest_shift, shift)
if biggest_shift < cutoff:
break
return clusters
def getDistance(a, b):
if a.n != b.n:
raise Exception("ILLEGAL: non comparable points")
ret = reduce(lambda x, y: x + pow((a.coords[y] - b.coords[y]), 2), range(a.n), 0.0)
return math.sqrt(ret)
def makeRandomPoint(n, lower, upper):
return Point([random.uniform(lower, upper) for i in range(n)])
def main():
num_points, dim, k, cutoff, lower, upper = 10, 2, 3, 0.5, 0, 200
points = map(lambda i: makeRandomPoint(dim, lower, upper), range(num_points))
clusters = kmeans(points, k, cutoff)
for i, c in enumerate(clusters):
for p in c.points:
print "Cluster: ", i, "\t Point: ", p
if __name__ == "__main__":
main()
果然,它没有用!
Traceback (most recent call last):
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 100, in ?
main()
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 92, in main
[ clusters = kmeans(points, k, cutoff)
[[89.152748179548524, 81.217634455465131]], [[83.439023369838509, 169.75355953688432]], [[1.8622622156419633, 41.364078271733739]]]
Dividing by 0
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 69, in kmeans
shift = clusters[i].update(lists[i])
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 35, in update
self.centroid = self.calculateCentroid()
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 43, in calculateCentroid
centroid_coords = [reduce_coord(i) / len(self.points) for i in range(self.n)]
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 39, in <lambda>
reduce_coord = lambda i:reduce(lambda x,p : x + p.coords[i], self.points, 0.0)
File "C:\Users\philippe\Documents\workspace-sts-2.7.2.RELEASE\scribber\kmeans\kmeans.py", line 39, in <lambda>
reduce_coord = lambda i:reduce(lambda x,p : x + p.coords[i], self.points, 0.0)
AttributeError: 'int' object has no attribute 'coords'
当我在函数lists
中kmeans(points, k, cutoff)
进行打印时,我得到了
[[], [], []]
。我试图解决这个问题,为什么这会给我一个空列表。我发布了整个代码,因此可以运行代码并复制错误。在错误日志中,可以查看“群集”是什么:点列表。
感谢
答案 0 :(得分:1)
问题在于,如果最接近给定群集的点列表为空(所有点都更接近不同的群集),那么您将得到除以0的错误,此时您将垃圾数据分配给self.points导致你看到的最终错误。
如果两个群集具有相同的质心,则可以这样做,在这种情况下,第二个群集将永远不会为其分配点。
顺便说一下,还有另一个错误。你前面有一个额外的缩进 列表[指数] .append(p)的 您应该考虑使用enumerate和min重写整个循环,以使其更干净。
以下是我建议重写的方法。
while True:
newPoints = dict([(c,[]) for c in clusters])
for p in points:
cluster = min(clusters, key = lambda c:getDistance(p, c.centroid))
newPoints[cluster].append(p)
biggest_shift = 0.0
for c in clusters:
if newPoints[c]:
shift = c.update(newPoints[c])
biggest_shift = max(biggest_shift, shift)
if biggest_shift < cutoff:
break