我可以在此计算中消除所有Python循环:
result[i,j,k] = (x[i] * y[j] * z[k]).sum()
其中x[i]
,y[j]
,z[k]
是长度为N
且x
,y
,z
的向量尺寸长度为A
,B
,C
st输出是形状(A,B,C)
,每个元素都是
三元产品的总和(元素方面)。
我可以从3到1循环(下面的代码)得到它,但我很难尝试 消除最后一个循环。
如果有必要,我可以A=B=C
(通过少量填充)。
# Example with 3 loops, 2 loops, 1 loop (testing omitted)
N = 100 # more like 100k in real problem
A = 2 # more like 20 in real problem
B = 3 # more like 20 in real problem
C = 4 # more like 20 in real problem
import numpy
x = numpy.random.rand(A, N)
y = numpy.random.rand(B, N)
z = numpy.random.rand(C, N)
# outputs of each variant
result_slow = numpy.empty((A,B,C))
result_vec_C = numpy.empty((A,B,C))
result_vec_CB = numpy.empty((A,B,C))
# 3 nested loops
for i in range(A):
for j in range(B):
for k in range(C):
result_slow[i,j,k] = (x[i] * y[j] * z[k]).sum()
# vectorize loop over C (2 nested loops)
for i in range(A):
for j in range(B):
result_vec_C[i,j,:] = (x[i] * y[j] * z).sum(axis=1)
# vectorize one C and B (one loop)
for i in range(A):
result_vec_CB[i,:,:] = numpy.dot(x[i] * y, z.transpose())
numpy.testing.assert_almost_equal(result_slow, result_vec_C)
numpy.testing.assert_almost_equal(result_slow, result_vec_CB)
答案 0 :(得分:9)
如果你正在使用numpy> 1.6,有一个很棒的np.einsum
函数:
np.einsum('im,jm,km->ijk',x,y,z)
这相当于您的循环版本。一旦你在真正的问题中达到阵列的大小,我不确定这对效率是否公平(当我移动到那些尺寸时,我实际上在我的机器上遇到了段错误)。我经常喜欢这些问题的另一个解决方案是使用cython重写该方法。
答案 1 :(得分:8)
使用einsum
在你的情况下很有意义;但你可以很容易地手工完成。诀窍是使阵列可以相互播放。这意味着要重塑它们,以便每个阵列沿着自己的轴独立变化。然后将它们相乘,让numpy
照顾广播;然后沿最后(最右边)轴求和。
>>> x = numpy.arange(2 * 4).reshape(2, 4)
>>> y = numpy.arange(3 * 4).reshape(3, 4)
>>> z = numpy.arange(4 * 4).reshape(4, 4)
>>> (x.reshape(2, 1, 1, 4) *
... y.reshape(1, 3, 1, 4) *
... z.reshape(1, 1, 4, 4)).sum(axis=3)
array([[[ 36, 92, 148, 204],
[ 92, 244, 396, 548],
[ 148, 396, 644, 892]],
[[ 92, 244, 396, 548],
[ 244, 748, 1252, 1756],
[ 396, 1252, 2108, 2964]]])
您可以使用切片表示法newaxis
值(等于None
)使其更加通用,因此下面的内容也适用于None
,并且事实sum
接受负轴值(-1
表示最后一个,-2
表示倒数第二个,依此类推)。这样,您就不必了解阵列的原始形状;只要他们的最后一个轴兼容,这将共同播出前三个:
>>> (x[:, numpy.newaxis, numpy.newaxis, :] *
... y[numpy.newaxis, :, numpy.newaxis, :] *
... z[numpy.newaxis, numpy.newaxis, :, :]).sum(axis=-1)
array([[[ 36, 92, 148, 204],
[ 92, 244, 396, 548],
[ 148, 396, 644, 892]],
[[ 92, 244, 396, 548],
[ 244, 748, 1252, 1756],
[ 396, 1252, 2108, 2964]]])