如何将以下Json Response转换为C#对象?
{ "err_code": "0", "org": "CGK", "des": "SIN", "flight_date": "20120719",
"schedule":
[
["W2-888","20120719","20120719","1200","1600","03h00m","737-200","0",[["K","9"],["F","9"],["L","9"],["M","9"],["N","9"],["P","9"],["C","9"],["O","9"]]],
["W2-999","20120719","20120719","1800","2000","01h00m","MD-83","0",[["K","9"],["L","9"],["M","9"],["N","9"]]]
] }
答案 0 :(得分:40)
我建议您使用JSON.NET
。它是一个开源库,用于将c#对象序列化和反序列化为json和Json对象到.net对象...
序列化示例:
Product product = new Product();
product.Name = "Apple";
product.Expiry = new DateTime(2008, 12, 28);
product.Price = 3.99M;
product.Sizes = new string[] { "Small", "Medium", "Large" };
string json = JsonConvert.SerializeObject(product);
//{
// "Name": "Apple",
// "Expiry": new Date(1230422400000),
// "Price": 3.99,
// "Sizes": [
// "Small",
// "Medium",
// "Large"
// ]
//}
Product deserializedProduct = JsonConvert.DeserializeObject<Product>(json);
与其他JSON序列化技术的性能比较
答案 1 :(得分:38)
首先创建一个表示json数据的类。
public class MyFlightDto
{
public string err_code { get; set; }
public string org { get; set; }
public string flight_date { get; set; }
// Fill the missing properties for your data
}
使用Newtonsoft JSON序列化程序到Deserialize a json string到它对应的类对象。
var jsonInput = "{ org:'myOrg',des:'hello'}";
MyFlightDto flight = Newtonsoft.Json.JsonConvert.DeserializeObject<MyFlightDto>(jsonInput);
或使用JavaScriptSerializer
将其转换为类(不建议使用,因为newtonsoft json序列化程序似乎表现更好)。
string jsonInput="have your valid json input here"; //
JavaScriptSerializer jsonSerializer = new JavaScriptSerializer();
Customer objCustomer = jsonSerializer.Deserialize<Customer >(jsonInput)
假设您要将其转换为Customer
classe的实例。您的类应该类似于JSON
结构(属性)
答案 2 :(得分:37)
要从字符串创建json类,请复制字符串。
在Visual Sudio中,点击编辑&gt;粘贴特殊&gt;将Json粘贴为类。
答案 3 :(得分:1)
复制您的Json并粘贴到http://json2csharp.com/上的文本框中,然后单击“生成”按钮
将使用以下cs文件生成一个cs类:
var generatecsResponce = JsonConvert.DeserializeObject(yourJson);
其中RootObject是生成的CS文件的名称;
答案 4 :(得分:1)
df2['Expected_%']= df2['Sports'].map(df1.set_index('Sports')['Expected_%'])
summed = df2.groupby('Region')['Count'].transform('sum')
df2['Expected_count'] = summed.mul(df2['Expected_%']).div(100)
print (df2)
Region Sports Count Percentage Expected_% Expected_count
0 North Cricket 800 75.0 70 700.0
1 North Football 50 5.0 20 200.0
2 North Tennis 150 20.0 10 100.0
3 South Cricket 1300 65.0 70 1400.0
4 South Football 550 27.5 20 400.0
5 South Tennis 150 7.5 10 200.0
答案 5 :(得分:0)
这将获取一个json字符串并将其转换为您指定的任何类
public static T ConvertJsonToClass<T>(this string json)
{
System.Web.Script.Serialization.JavaScriptSerializer serializer = new System.Web.Script.Serialization.JavaScriptSerializer();
return serializer.Deserialize<T>(json);
}