我试图看看对象中问题的共享内存的使用是否可以改善执行时间并导致一些加速:
内核功能,不使用共享内存
__global__ void 3dc(const int nx, const int ny, const int nz, const float* in1,
const float* in2, const float* in3, const float* in4, float* out)
{
int i, j, k;
int tidx = threadIdx.x + blockIdx.x*blockDim.x;
if(tidx < (nx)*(ny)*(nz)){
k = tidx/((nx)*(ny));
j = (tidx - k*(nx)*(ny))/(nx);
i = tidx - k*(nx)*(ny) - j*(nx);
out[i + nx*j + nx*ny*k] =
in1[i + nx*j + nx*ny*k ]+
in1[(i+1) + nx*j + nx*ny*k ]+
in1[(i+1) + nx*(j+1) + nx*ny*k ]+
in1[i + nx*(j+1) + nx*ny*k ]+
in1[i + nx*j + nx*ny*(k+1)]+
in1[(i+1) + nx*j + nx*ny*(k+1)]+
in1[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
in1[i + nx*(j+1) + nx*ny*(k+1)]+
in2[i + nx*j + nx*ny*k ]+
in2[(i+1) + nx*j + nx*ny*k ]+
in2[(i+1) + nx*(j+1) + nx*ny*k ]+
in2[i + nx*(j+1) + nx*ny*k ]+
in2[i + nx*j + nx*ny*(k+1)]+
in2[(i+1) + nx*j + nx*ny*(k+1)]+
in2[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
in2[i + nx*(j+1) + nx*ny*(k+1)]+
in3[i + nx*j + nx*ny*k ]+
in3[(i+1) + nx*j + nx*ny*k ]+
in3[(i+1) + nx*(j+1) + nx*ny*k ]+
in3[i + nx*(j+1) + nx*ny*k ]+
in3[i + nx*j + nx*ny*(k+1)]+
in3[(i+1) + nx*j + nx*ny*(k+1)]+
in3[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
in3[i + nx*(j+1) + nx*ny*(k+1)]+
in4[i + nx*j + nx*ny*k ]+
in4[(i+1) + nx*j + nx*ny*k ]+
in4[(i+1) + nx*(j+1) + nx*ny*k ]+
in4[i + nx*(j+1) + nx*ny*k ]+
in4[i + nx*j + nx*ny*(k+1)]+
in4[(i+1) + nx*j + nx*ny*(k+1)]+
in4[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
in4[i + nx*(j+1) + nx*ny*(k+1)];
}
} // 3dc
使用共享内存的内核功能
__global__ void 3d_shared_memory(const int nx, const int ny, const int nz, const float* in1, const float* in2, const float* in3, const float* in4, float* out){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
int idy = blockIdx.y*blockDim.y + threadIdx.y;
int idz = blockIdx.z*blockDim.z + threadIdx.z;
__shared__ float smem1[16][16][4];
__shared__ float smem2[16][16][4];
__shared__ float smem3[16][16][4];
__shared__ float smem4[16][16][4];
if ((idx < nx) && (idy < ny) && (idz < nz)){
smem1[threadIdx.x][threadIdx.y][threadIdx.z] = in1[idz * nx * ny + idy * nx + idx];
smem2[threadIdx.x][threadIdx.y][threadIdx.z] = in2[idz * nx * ny + idy * nx + idx];
smem3[threadIdx.x][threadIdx.y][threadIdx.z] = in3[idz * nx * ny + idy * nx + idx];
smem4[threadIdx.x][threadIdx.y][threadIdx.z] = in4[idz * nx * ny + idy * nx + idx];
__syncthreads();
for(int k = 0; k < 3; k++){
for(int j = 0; j < 15; j++){
for(int i = 0; i < 15; i++){
out[idz * nx * ny + idy * nx + idx] = smem1[i][j][k] + smem1[i+1][j][k] + smem1[i+1][j+1][k] + smem1[i][j+1][k] + smem1[i][j][k+1] + smem1[i+1][j][k+1] + smem1[i+1][j+1][k+1] + smem1[i][j+1][k+1] +
smem2[i][j][k] + smem2[i+1][j][k] + smem2[i+1][j+1][k] + smem2[i][j+1][k] + smem2[i][j][k+1] + smem2[i+1][j][k+1] + smem2[i+1][j+1][k+1] + smem2[i][j+1][k+1] +
smem3[i][j][k] + smem3[i+1][j][k] + smem3[i+1][j+1][k] + smem3[i][j+1][k] + smem3[i][j][k+1] + smem3[i+1][j][k+1] + smem3[i+1][j+1][k+1] + smem3[i][j+1][k+1] +
smem4[i][j][k] + smem4[i+1][j][k] + smem4[i+1][j+1][k] + smem4[i][j+1][k] + smem4[i][j][k+1] + smem4[i+1][j][k+1] + smem4[i+1][j+1][k+1] + smem4[i][j+1][k+1];
}
}
}
}
} //3d_shared_memory example
共享内存代码总是较慢。有没有更好的方法来利用共享内存来解决这个问题?提前感谢您的建议。
答案 0 :(得分:2)
我正在为这篇文章提供一个迟到的答案,将其从未答复的列表中删除。
您基本上是使用共享内存在3D中实现Boxcar过滤器。除了上面评论中已经提到的那些,我还看到了在使用共享内存时没有遇到加速的两个可能原因:
2
。下面,我将提供一个代码来比较仅使用全局内存和共享内存的情况。该代码是Robert Crovella在3d CUDA kernel indexing for image filtering?发布的代码的修改。
此代码的结果,适用于DATASIZE_X x DATASIZE_Y x DATASIZE_Z = 1024 x 1024 x 64
:
GT 540M案例
BOXCAR_SIZE GLOBAL SHARED
2 360ms 342ms
4 1292ms 583ms
6 3675ms 1166ms
开普勒K20c案例
BOXCAR_SIZE GLOBAL SHARED
2 8ms 16ms
4 40ms 33ms
6 142ms 102ms
代码:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BOXCAR_SIZE 6
#define DATASIZE_X 1024
#define DATASIZE_Y 1024
#define DATASIZE_Z 64
#define BLOCKSIZE_X 8
#define BLOCKSIZE_Y 8
#define BLOCKSIZE_Z 8
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/*****************************/
/* BOXCAR WITH SHARED MEMORY */
/*****************************/
__global__ void boxcar_shared(int* __restrict__ output, const int* __restrict__ input)
{
__shared__ int smem[(BLOCKSIZE_Z + (BOXCAR_SIZE-1))][(BLOCKSIZE_Y + (BOXCAR_SIZE-1))][(BLOCKSIZE_X + (BOXCAR_SIZE-1))];
int idx = blockIdx.x*blockDim.x + threadIdx.x;
int idy = blockIdx.y*blockDim.y + threadIdx.y;
int idz = blockIdx.z*blockDim.z + threadIdx.z;
if ((idx < (DATASIZE_X+BOXCAR_SIZE-1)) && (idy < (DATASIZE_Y+BOXCAR_SIZE-1)) && (idz < (DATASIZE_Z+BOXCAR_SIZE-1))){
smem[threadIdx.z][threadIdx.y][threadIdx.x]=input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (idz < DATASIZE_Z))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x] = input[(idz + (BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idy < DATASIZE_Y))
smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idx < DATASIZE_X))
smem[threadIdx.z][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idx < DATASIZE_X))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
smem[threadIdx.z+(BOXCAR_SIZE-1)][threadIdx.y+(BOXCAR_SIZE-1)][threadIdx.x+(BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
}
__syncthreads();
if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){
int temp = 0;
for (int i=0; i<BOXCAR_SIZE; i++)
for (int j=0; j<BOXCAR_SIZE; j++)
for (int k=0; k<BOXCAR_SIZE; k++)
temp = temp + smem[threadIdx.z + i][threadIdx.y + j][threadIdx.x + k];
output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
}
}
/********************************/
/* BOXCAR WITHOUT SHARED MEMORY */
/********************************/
__global__ void boxcar(int* __restrict__ output, const int* __restrict__ input)
{
int idx = blockIdx.x*blockDim.x + threadIdx.x;
int idy = blockIdx.y*blockDim.y + threadIdx.y;
int idz = blockIdx.z*blockDim.z + threadIdx.z;
if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){
int temp = 0;
for (int i=0; i<BOXCAR_SIZE; i++)
for (int j=0; j<BOXCAR_SIZE; j++)
for (int k=0; k<BOXCAR_SIZE; k++)
temp = temp + input[(k+idz)*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (j+idy)*(DATASIZE_X+BOXCAR_SIZE-1) + (i+idx)];
output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
}
}
/********/
/* MAIN */
/********/
int main(void)
{
int i, j, k, u, v, w, temp;
// --- these are just for timing
clock_t t0, t1, t2, t3;
double t1sum=0.0f;
double t2sum=0.0f;
double t3sum=0.0f;
const int nx = DATASIZE_X;
const int ny = DATASIZE_Y;
const int nz = DATASIZE_Z;
const int wx = BOXCAR_SIZE;
const int wy = BOXCAR_SIZE;
const int wz = BOXCAR_SIZE;
// --- start timing
t0 = clock();
// --- CPU memory allocations
int *input, *output, *ref_output;
if ((input = (int*)malloc(((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
if ((output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
if ((ref_output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
// --- Data generation
srand(time(NULL));
for(int i=0; i<(nz+(wz-1)); i++)
for(int j=0; j<(ny+(wy-1)); j++)
for (int k=0; k<(nx+(wx-1)); k++)
input[i*(ny+(wy-1))*(nx+(wx-1))+j*(nx+(wx-1))+k] = rand();
t1 = clock();
// --- Allocate GPU space for data and results
int *d_output, *d_input; // storage for input
gpuErrchk(cudaMalloc((void**)&d_input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))));
gpuErrchk(cudaMalloc((void**)&d_output, ((nx*ny*nz)*sizeof(int))));
// --- Copy data from GPU to CPU
gpuErrchk(cudaMemcpy(d_input, input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int)), cudaMemcpyHostToDevice));
const dim3 blockSize(BLOCKSIZE_X, BLOCKSIZE_Y, BLOCKSIZE_Z);
const dim3 gridSize(((DATASIZE_X+BLOCKSIZE_X-1)/BLOCKSIZE_X), ((DATASIZE_Y+BLOCKSIZE_Y-1)/BLOCKSIZE_Y), ((DATASIZE_Z+BLOCKSIZE_Z-1)/BLOCKSIZE_Z));
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
boxcar_shared<<<gridSize,blockSize>>>(d_output, d_input);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Elapsed time: %3.4f ms \n", time);
// --- Copy result from GPU to CPU
gpuErrchk(cudaMemcpy(output, d_output, ((nx*ny*nz)*sizeof(int)), cudaMemcpyDeviceToHost));
t2 = clock();
t2sum = ((double)(t2-t1))/CLOCKS_PER_SEC;
printf(" Device compute took %3.2f seconds. Beginning host compute.\n", t2sum);
// --- Host-side computations
for (int u=0; u<nz; u++)
for (int v=0; v<ny; v++)
for (int w=0; w<nx; w++){
temp = 0;
for (int i=0; i<wz; i++)
for (int j=0; j<wy; j++)
for (int k=0; k<wx; k++)
temp = temp + input[(i+u)*(ny+(wy-1))*(nx+(wx-1))+(j+v)*(nx+(wx-1))+(k+w)];
ref_output[u*ny*nx + v*nx + w] = temp;
}
t3 = clock();
t3sum = ((double)(t3-t2))/CLOCKS_PER_SEC;
printf(" Host compute took %3.2f seconds. Comparing results.\n", t3sum);
// --- Check CPU and GPU results
for (int i=0; i<nz; i++)
for (int j=0; j<ny; j++)
for (int k=0; k<nx; k++)
if (ref_output[i*ny*nx + j*nx + k] != output[i*ny*nx + j*nx + k]) {
printf("Mismatch at x= %d, y= %d, z= %d Host= %d, Device = %d\n", i, j, k, ref_output[i*ny*nx + j*nx + k], output[i*ny*nx + j*nx + k]);
return 1;
}
printf("Results match!\n");
// --- Freeing memory
free(input);
free(output);
gpuErrchk(cudaFree(d_input));
gpuErrchk(cudaFree(d_output));
cudaDeviceReset();
return 0;
}