我正在使用版本0.7.3中的pandas.ols
函数。当使用简单回归与窗口回归时,我似乎得到了调整后的$ R ^ 2 $的不一致值。例如,如果realizedData
和pastData
有600个条目,那么
model = pandas.ols(y = realizedData, x = pastData, intercept = 0, window = 600)
产生以下输出: -
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <1> + <10> + <90000>
Number of Observations: 596
Number of Degrees of Freedom: 3
R-squared: 0.6914
Adj R-squared: 0.6904
Rmse: 699.4880
F-stat (3, 593): 664.3691, p-value: 0.0000
Degrees of Freedom: model 2, resid 593
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
1 0.4171 0.0428 9.75 0.0000 0.3333 0.5010
10 0.4362 0.0688 6.34 0.0000 0.3014 0.5709
90000 0.0623 0.0319 1.95 0.0517 -0.0003 0.1249
---------------------------------End of Summary---------------------------------
只是使用
model = pandas.ols(y = realizedData, x = pastData, intercept = 0)
得到: -
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <1> + <10> + <90000>
Number of Observations: 596
Number of Degrees of Freedom: 3
R-squared: 0.6914
Adj R-squared: 0.3053
Rmse: 699.4880
F-stat (3, 593): 1.7909, p-value: 0.1477
Degrees of Freedom: model 2, resid 593
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
1 0.4171 0.0428 9.75 0.0000 0.3333 0.5010
10 0.4362 0.0688 6.34 0.0000 0.3014 0.5709
90000 0.0623 0.0319 1.95 0.0517 -0.0003 0.1249
---------------------------------End of Summary---------------------------------
请注意,除了相关的$ R ^ 2 $值外,输出相同。
这是一个错误还是我做错了什么?
答案 0 :(得分:1)
我认为这与缺乏拦截有关。你能否在GitHub上报告一个问题?