我有一个CSV文件,其中的字段包含换行符,例如:
A, B, C, D, E, F
123, 456, tree
, very, bla, indigo
(在这种情况下,第二行中的第三个字段是“tree \ n”
我尝试了以下内容:
import csv
catalog = csv.reader(open('test.csv', 'rU'), delimiter=",", dialect=csv.excel_tab)
for row in catalog:
print "Length: ", len(row), row
我得到的结果是:
Length: 6 ['A', ' B', ' C', ' D', ' E', ' F']
Length: 3 ['123', ' 456', ' tree']
Length: 4 [' ', ' very', ' bla', ' indigo']
有没有人知道如何快速删除多余的换行符?
谢谢!
答案 0 :(得分:17)
假设您有此Excel电子表格:
注意:
将其保存为Excel中的CSV,您将获得此csv文件:
A1,B1,"C1,+comma",D1
,B2,"line 1
line 2",D2
,,C3,"D3,+comma"
,,,D4 space
可能,你会想要将它读入Python,空白单元格仍有意义,并且嵌入的逗号处理正确。
所以,这个:
with open("test.csv", 'rU') as csvIN:
outCSV=(line for line in csv.reader(csvIN, dialect='excel'))
for row in outCSV:
print("Length: ", len(row), row)
正确生成Excel中表示的4x4 List列表矩阵:
Length: 4 ['A1', 'B1', 'C1,+comma', 'D1']
Length: 4 ['', 'B2', 'line 1\nline 2', 'D2']
Length: 4 ['', '', 'C3', 'D3,+comma']
Length: 4 ['', '', '', 'D4 space']
您发布的示例CSV文件在字段周围缺少引号,并带有“额外换行符”,表示该换行符的含义不明确。它是新行还是多行字段?
因此,您只能解释此csv文件:
A, B, C, D, E, F
123, 456, tree
, very, bla, indigo
作为一维列表如此:
with open("test.csv", 'rU') as csvIN:
outCSV=[field.strip() for row in csv.reader(csvIN, delimiter=',')
for field in row if field]
生成这个一维列表:
['A', 'B', 'C', 'D', 'E', 'F', '123', '456', 'tree', 'very', 'bla', 'indigo']
然后可以根据需要将其解释并重新分组到任何子分组中。
python中的惯用重组方法使用zip,如下所示:
>>> zip(*[iter(outCSV)]*6)
[('A', 'B', 'C', 'D', 'E', 'F'), ('123', '456', 'tree', 'very', 'bla', 'indigo')]
或者,如果你想要一个列表列表,这也是惯用的:
>>> [outCSV[i:i+6] for i in range(0, len(outCSV),6)]
[['A', 'B', 'C', 'D', 'E', 'F'], ['123', '456', 'tree', 'very', 'bla', 'indigo']]
如果您可以更改CSV文件的创建方式,则解释起来就不那么模糊了。
答案 1 :(得分:6)
如果您有非空白单元格,这将有效
data = [['A', ' B', ' C', ' D', ' E', ' F'],
['123', ' 456', ' tree'],
[' ', ' very', ' bla', ' indigo']]
flat_list = chain.from_iterable(data)
flat_list = [cell for cell in flat_list if cell.strip() != ''] # remove blank cells
rows = [flat_list[i:i+6] for i in range(0, len(flat_list), 6)] # chunk into groups of 6
print rows
输出:
[['A', ' B', ' C', ' D', ' E', ' F'], ['123', ' 456', ' tree', ' very', ' bla', ' indigo']]
如果输入中有空白单元格,则大部分时间都会有效:
data = [['A', ' B', ' C', ' D', ' E', ' F'],
['123', ' 456', ' tree'],
[' ', ' very', ' bla', ' indigo']]
clean_rows = []
saved_row = []
for row in data:
if len(saved_row):
row_tail = saved_row.pop()
row[0] = row_tail + row[0] # reconstitute field broken by newline
row = saved_row + row # and reassemble the row (possibly only partially)
if len(row) >= 6:
clean_rows.append(row)
saved_row = []
else:
saved_row = row
print clean_rows
输出:
[['A', ' B', ' C', ' D', ' E', ' F'], ['123', ' 456', ' tree ', ' very', ' bla', ' indigo']]
然而,即使是第二种解决方案也会因输入
而失败A,B,C,D,E,F\nG
1,2,3,4,5,6
在这种情况下,输入是不明确的,没有算法能够猜出你是否意味着:
A,B,C,D,E,F
G\n1,2,3,4,5,6
(或上面的输入)
如果您遇到这种情况,则必须返回保存数据并将其保存为更干净格式的人(btw开放式办公室引用CSV文件中的换行符远远优于Excel)。
答案 2 :(得分:1)
这应该有效。 (警告:脑编译代码)
with open('test.csv', 'rU') as infile:
data = []
for line in infile:
temp_data = line.split(',')
try:
while len(temp_data) < 6: #column length
temp_data.extend(infile.next())
except StopIteration: pass
data.append(temp_data)
答案 3 :(得分:1)
这适用于CSV模块并清除空白字段和行:
import csv
import StringIO
data="""A, B, C, D, E, F
123, 456, tree
,,
, very, bla, indigo"""
f=StringIO.StringIO(data) #used just to simulate a file. Use your file here...
reader = csv.reader(f)
out=[]
for line in reader:
line=[x.strip() for x in line if x] # remove 'if x' if you want blank fields
if len(line):
out.append(line)
print out
打印:
[['A', ' B', ' C', ' D', ' E', ' F'],
['123', '456', 'tree'],
['very', 'bla', 'indigo']]
如果您想要6个col块:
cols=6
out=[i for sl in out for i in sl] # flatten out
out=[out[i:i+cols] for i in range(0, len(out), cols)] # rechunk into 'cols'
打印:
[['A', 'B', 'C', 'D', 'E', 'F'],
['123', '456', 'tree', 'very', 'bla', 'indigo']]
答案 4 :(得分:1)
如果每行中的字段数相同且字段不能为空:
from itertools import izip_longest
nfields = 6
with open(filename) as f:
fields = (field.strip() for line in f for field in line.split(',') if field)
for row in izip_longest(*[iter(fields)]*nfields): # grouper recipe*
print(row)
('A', 'B', 'C', 'D', 'E', 'F')
('123', '456', 'tree', 'very', 'bla', 'indigo')
答案 5 :(得分:0)
如果您知道列数,最好的方法是忽略行尾,然后拆分。
像这样的东西
with open(filename, 'rU') as fp:
data = ''.join(fp.readlines())
data = data.split(',')
for n in range(0, len(data), 6)
print(data[n:n+6])
如果您愿意,可以将其轻松转换为生成器:
def read_ugly_file(filename, delimiter=',', columns=6):
with open(filename, 'rU') as fp:
data = ''.join(fp.readlines())
data = data.split(delimiter)
for n in range(0, len(data), columns)
yield data[n:n+columns]
for row in read_ugly_file('myfile.csv'):
print(row)