我正在尝试在matlab中实现BOW对象识别代码。这个过程有点复杂,我在找到有关程序的正确文档方面遇到了很多麻烦。那么有人可以仔细检查下面我的计划是否有意义? 我在这里广泛使用VLSIFT library
Training:
1. Extract SIFT image descriptor with VLSIFT
2. Quantize the descriptors with k-means(vl_hikmeans)
3. Take quantized descriptors and create histogram(VL_HIKMEANSHIST)
4. Create SVM from histograms(VL_PEGASOS?)
我理解第1-3步,但我不太确定SVM的功能是否正确。 VL_PEGASOS采用以下内容:
W = VL_PEGASOS(X, Y, LAMBDA)
我如何将此功能与我创建的直方图一起使用?
最后在识别阶段,如何将图像与SVM定义的类匹配?
答案 0 :(得分:2)
您是否看过他们的Caltech 101 example code,即全面实施BoW方法。
以下是他们用pegasos分类并评估结果的部分:
% --------------------------------------------------------------------
% Train SVM
% --------------------------------------------------------------------
lambda = 1 / (conf.svm.C * length(selTrain)) ;
w = [] ;
for ci = 1:length(classes)
perm = randperm(length(selTrain)) ;
fprintf('Training model for class %s\n', classes{ci}) ;
y = 2 * (imageClass(selTrain) == ci) - 1 ;
data = vl_maketrainingset(psix(:,selTrain(perm)), int8(y(perm))) ;
[w(:,ci) b(ci)] = vl_svmpegasos(data, lambda, ...
'MaxIterations', 50/lambda, ...
'BiasMultiplier', conf.svm.biasMultiplier) ;
model.b = conf.svm.biasMultiplier * b ;
model.w = w ;
% --------------------------------------------------------------------
% Test SVM and evaluate
% --------------------------------------------------------------------
% Estimate the class of the test images
scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ;
[drop, imageEstClass] = max(scores, [], 1) ;
% Compute the confusion matrix
idx = sub2ind([length(classes), length(classes)], ...
imageClass(selTest), imageEstClass(selTest)) ;
confus = zeros(length(classes)) ;
confus = vl_binsum(confus, ones(size(idx)), idx) ;