我正在运行一些模拟,我希望将线性模型拟合到我的数据子集中:
library(reshape2)
library(plyr)
all <- mutate(iris, mean_width = ave(Petal.Width, Petal.Length))
str(all)
## want to minimise sum(|y*polynomial(x) - z|^2) for each id
## in the region where x != exclude
weighted_difference <- function(d, n=4, exclude = c(2.5, 3), ...){
sub <- subset(d, !(Sepal.Width > exclude[1] &
Sepal.Width < exclude[2]))
fit <- lm(mean_width ~ I(poly(Petal.Length, n, raw=TRUE)*Petal.Width) + Petal.Width - 1, data = sub)
mutate(d, predict = predict(fit, d),
difference = Petal.Width - predict )
}
results <- ddply(all, "Species", weighted_difference)
这有效,但我想使用一种更简单的方法,我首先为拟合创建一个新的data.frame,
exclude <- c(3, 6)
sub <- subset(all, !(x > exclude[1] & x < exclude[2]))
适合所有情况,
fits <- lm(z ~ I(poly(x, n, raw=TRUE)*y) + y - 1 | id, data = sub)
(这... | id
显然是无效的语法)
并立即对完整数据使用预测,
all <- mutate(all, predict = predict(fits, all), difference = y - predict )
是否有一些使用lm()
这样的技巧?还是更好的解决方案?感谢。
答案 0 :(得分:2)
lmList
(来自nlme
)是否符合您的要求?
library(nlme)
fits <- lmList(z ~ I(poly(x, n, raw=TRUE)*y) + y - 1 | id, data = sub)