我试图从替换数据中抽取一个子集,这里我给出一个简单的例子如下:
dat <- data.frame (
group = c(1,1,2,2,2,3,3,4,4,4,4,5,5),
var = c(0.1,0.0,0.3,0.4,0.8,0.5,0.2,0.3,0.7,0.9,0.2,0.4,0.6)
)
我只想根据组号对子集进行采样。如果选择组(例如,组= 1),则将选择整个组(在上面的简单示例中为两个组成员)。如果该组被选择多次,则组号将被更改为新组,例如,1.1,1.1,1.2,1.2 ......。新数据可能如下所示:
newdat <- data.frame (
group = c(3,3,5,5,3.1,3.1,1,1,3.2,3.2,5.1,5.1,3.3,3.3,2,2,2),
var = c(0.5,0.2,0.4,0.6,0.5,0.2,0.1,0.0,0.5,0.2,0.4,0.6,0.5,0.2,0.3,0.4,0.8)
)
非常感谢任何帮助。
答案 0 :(得分:3)
这是一个相当简单的解决方案,使用make.unique()
在newdat
中创建群组的名称:
## Your data
dat <- data.frame (
group = c(1,1,2,2,2,3,3,4,4,4,4,5,5),
var = c(0.1,0.0,0.3,0.4,0.8,0.5,0.2,0.3,0.7,0.9,0.2,0.4,0.6)
)
n <- c(3,5,3,1,3,2,5,3,2)
## Make a 'look-up' data frame that associates sampled groups with new names,
## then use merge to create `newdat`
df <- data.frame(group = n,
newgroup = as.numeric(make.unique(as.character(n))))
newdat <- merge(df, dat)[-1]
names(newdat)[1] <- "group"
答案 1 :(得分:2)
选择您喜欢的n
:
n <- 5
然后运行它(或从中创建一个函数):
lvls <- unique(dat$group)
gp.orig <- gp.samp <- sample( lvls, n, replace=TRUE ) #this is the actual sampling
library(taRifx)
res <- stack.list(lapply( gp.samp, function(i) dat[dat$group==i,] ))
# Now make your pretty group names
while(any(duplicated(gp.samp))) {
gp.samp[duplicated(gp.samp)] <- gp.samp[duplicated(gp.samp)] + .1
}
# Replace group with pretty group names (a simple merge doesn't work here because the groups are not unique)
gp.df <- as.data.frame(table(dat$group))
names(gp.df) <- c("group","n")
gp.samp.df <- merge(data.frame(group=gp.orig,pretty=gp.samp,order=seq(length(gp.orig))), gp.df )
gp.samp.df <- sort(gp.samp.df, f=~order)
res$pretty <- with( gp.samp.df, rep(pretty,n))
group var pretty
6 3 0.5 3.0
7 3 0.2 3.0
12 5 0.4 5.0
13 5 0.6 5.0
61 3 0.5 3.1
71 3 0.2 3.1
62 3 0.5 3.2
72 3 0.2 3.2
3 2 0.3 2.0
4 2 0.4 2.0
5 2 0.8 2.0
应该很一般。如果你想要超过10个组,你将不得不使用基于文本的方法来计算“漂亮”版本,因为它将以数字为基础进行包装。例如。第11组3将计算为3+10*.1=4
!