是否可以检查是否为类定义了成员函数,即使该成员是从未知的基类继承的

时间:2012-06-13 04:24:38

标签: c++ sfinae

我找到了类似this one之类的问题和答案。但是,正如我尝试的那样,如果测试成员直接在被测试的类中定义,则此SFINAE测试仅成功。例如,以下类BD1打印HAS,而其他两个打印NOT HAS。有没有办法确定一个类是否有一个成员,它是由它自己定义,还是一个基类,并且在这种情况下不知道基类的名称。我的动机是,我想编写一个泛型函数,如果它存在,将调用某个特定的方法(从基础或非基础,参数的类型是通用的,留下其可能基础的类型)。

#include <iostream>

class HasFoo
{
    public :

    typedef char Small;
    typedef struct {char; char;} Large;

    template <typename C, void (C::*) ()> class SFINAE {};

    template <typename C> static Small test (SFINAE<C, &C::foo> *)
    {
        std::cout << "HAS" << std::endl;
    }

    template <typename C> static Large test (...)
    {
        std::cout << "NOT HAS" << std::endl;
    }
};

class B
{
    public :

    void foo () {}
};

class D1 : public B
{
    public :

    void foo () {} // overide
};

class D2 : public B
{
    public :

    using B::foo;
};

class D3 : public B {};

int main ()
{
    HasFoo::test<B>(0);
    HasFoo::test<D1>(0);
    HasFoo::test<D2>(0);
    HasFoo::test<D3>(0);
}

3 个答案:

答案 0 :(得分:8)

在C ++ 03中,遗憾的是这不可能,抱歉。

在C ++ 11中,由于decltype的魔力,事情变得更容易 decltype允许您编写表达式来推断其结果的类型,因此您可以完美地命名基类的成员。如果方法是模板,则SFINAE适用于decltype表达式。

#include <iostream>

template <typename T>
auto has_foo(T& t) -> decltype(t.foo(), bool()) { return true; }

bool has_foo(...) { return false; }


struct Base {
    void foo() {}
};

struct Derived1: Base {
    void foo() {}
};

struct Derived2: Base {
    using Base::foo;
};

struct Derived3: Base {
};

int main() {
    Base b; Derived1 d1; Derived2 d2; Derived3 d3;

    std::cout << has_foo(b) << " "
              << has_foo(d1) << " "
              << has_foo(d2) << " "
              << has_foo(d3) << "\n";
}

不幸的是,ideone有一个版本的gcc,这个版本太旧了,而clang 3.0并不是更好。

答案 1 :(得分:3)

不幸的是,至少在C ++ 03中是不可能的,我也怀疑C ++ 11。

几点重要:

  1. 建议的SFINAE仅在方法为public
  2. 时有效
  3. 即使SFINAE适用于基本方法,但要点(1) 适用;因为privateprotected继承了SFINAE 可能最终没用了
  4. 假设您可能只想处理public方法/继承, 可以增强代码HasFoo::test<>以获取多个代码 基类也可以传递的参数; std::is_base_of<>可用于进一步验证 基础/派生关系;然后对基类应用相同的逻辑 也

答案 2 :(得分:3)

有一种方法可以确定类层次结构是否具有给定名称的成员。它使用SFINAE并通过创建歧义在名称查找中引入替代失败。此外,有一种方法可以测试公共成员是否可以调用;但是,无法确定成员是否公开SFINAE。

Here就是一个例子:

#include <iostream>

template < typename T >
struct has_foo
{
  typedef char yes;
  typedef char no[2];

  // Type that has a member with the name that will be checked.
  struct fallback { int foo; };

  // Type that will inherit from both T and mixin to guarantee that mixed_type
  // has the desired member.  If T::foo exists, then &mixed_type::foo will be
  // ambiguous.  Otherwise, if T::foo does not exists, then &mixed_type::foo
  // will successfully resolve to fallback::foo.
  struct mixed_type: T, fallback {};

  template < typename U, U > struct type_check {};

  // If substituation does not fail, then &U::foo is not ambiguous, indicating
  // that mixed_type only has one member named foo (i.e. fallback::foo).
  template < typename U > static no&  test( type_check< int (fallback::*),
                                                        &U::foo >* = 0 );

  // Substituation failed, so &U::foo is ambiguous, indicating that mixed_type
  // has multiple members named foo.  Thus, T::foo exists.
  template < typename U > static yes& test( ... );

  static const bool value = sizeof( yes ) == 
                            sizeof( test< mixed_type >( NULL ) );
};

namespace detail {
  class yes {};
  class no{ yes m[2]; };

  // sizeof will be used to determine what function is selected given an
  // expression.  An overloaded comma operator will be used to branch based
  // on types at compile-time.
  //   With ( helper, anything-other-than-no, yes ) return yes.
  //   With ( helper, no, yes ) return no.
  struct helper {};

  // Return helper.
  template < typename T > helper operator,( helper, const T& ); 

  // Overloads.
  yes operator,( helper, yes ); // For ( helper, yes ) return yes.
  no  operator,( helper, no );  // For ( helper, no  ) return no.
  no  operator,( no,     yes ); // For ( no,     yes ) return no.
} // namespace detail

template < typename T >
struct can_call_foo
{ 
  struct fallback { ::detail::no foo( ... ) const; };

  // Type that will inherit from T and fallback, this guarantees
  // that mixed_type has a foo method.
  struct mixed_type: T, fallback
  {
    using T::foo;
    using fallback::foo;
  };

  // U has a foo member.
  template < typename U, bool = has_foo< U >::value >
  struct impl
  {
    // Create the type sequence.
    // - Start with helper to guarantee the custom comma operator is used.
    // - This is evaluationg the expression, not executing, so cast null
    //   to a mixed_type pointer, then invoke foo.  If T::foo is selected,
    //   then the comma operator returns helper.  Otherwise, fooback::foo
    //   is selected, and the comma operator returns no.
    // - Either helper or no was returned from the first comma operator
    //   evaluation.  If ( helper, yes ) remains, then yes will be returned.
    //   Otherwise, ( no, yes ) remains; thus no will be returned. 
    static const bool value = sizeof( ::detail::yes ) == 
                              sizeof( ::detail::helper(),
                                      ((mixed_type*)0)->foo(),
                                      ::detail::yes() );
  };

  // U does not have a 'foo' member.
  template < typename U >
  struct impl< U, false >
  {
    static const bool value = false;
  };

  static const bool value = impl< T >::value;
};

// Types containing a foo member function.
struct B     { void foo();   };
struct D1: B { bool foo();   }; // hide B::foo
struct D2: B { using B::foo; }; // no-op, as no hiding occured.
struct D3: B {               }; 

// Type that do not have a member foo function.
struct F {};

// Type that has foo but it is not callable via T::foo().
struct G  { int foo;         };
struct G1 { bool foo( int ); };

int main ()
{
  std::cout << "B:  " << has_foo< B  >::value << " - "
                      << can_call_foo< B >::value << "\n"
            << "D1: " << has_foo< D1 >::value << " - "
                      << can_call_foo< D1 >::value << "\n"
            << "D2: " << has_foo< D2 >::value << " - "
                      << can_call_foo< D2 >::value << "\n"
            << "D3: " << has_foo< D3 >::value << " - "
                      << can_call_foo< D3 >::value << "\n"
            << "F:  " << has_foo< F  >::value << " - "
                      << can_call_foo< F >::value << "\n"
            << "G:  " << has_foo< G  >::value << " - "
                      << can_call_foo< G >::value << "\n"
            << "G1: " << has_foo< G1  >::value << " - "
                      << can_call_foo< G1 >::value << "\n"
            << std::endl;
  return 0;
}

产生以下输出:

B:  1 - 1
D1: 1 - 1
D2: 1 - 1
D3: 1 - 1
F:  0 - 0
G:  1 - 0
G1: 1 - 0

has_foo仅检查是否存在名为foo的成员。它不验证foo是否是可调用成员(公共成员函数或作为仿函数的公共成员)。

can_call_foo检查T::foo()是否可调用。如果T::foo()不公开,则会发生编译器错误。据我所知,没有办法通过SFINAE来阻止这种情况。要获得更完整,更出色但相当复杂的解决方案,请查看here