因此,为了帮助我理解一些更高级的Haskell / GHC特性和概念,我决定采用基于GADT的动态类型数据实现,并将其扩展到参数类型。 (我为这个例子的长度道歉。)
{-# LANGUAGE GADTs #-}
module Dyn ( Dynamic(..),
toDynamic,
fromDynamic
) where
import Control.Applicative
----------------------------------------------------------------
----------------------------------------------------------------
--
-- Equality proofs
--
-- | The type of equality proofs.
data Equal a b where
Reflexivity :: Equal a a
-- | Inductive case for parametric types
Induction :: Equal a b -> Equal (f a) (f b)
instance Show (Equal a b) where
show Reflexivity = "Reflexivity"
show (Induction proof) = "Induction (" ++ show proof ++ ")"
----------------------------------------------------------------
----------------------------------------------------------------
--
-- Type representations
--
-- | Type representations. If @x :: TypeRep a@, then @x@ is a singleton
-- value that stands in for type @a@.
data TypeRep a where
Integer :: TypeRep Integer
Char :: TypeRep Char
Maybe :: TypeRep a -> TypeRep (Maybe a)
List :: TypeRep a -> TypeRep [a]
-- | Typeclass for types that have a TypeRep
class Representable a where
typeRep :: TypeRep a
instance Representable Integer where typeRep = Integer
instance Representable Char where typeRep = Char
instance Representable a => Representable (Maybe a) where
typeRep = Maybe typeRep
instance Representable a => Representable [a] where
typeRep = List typeRep
-- | Match two types and return @Just@ an equality proof if they are
-- equal, @Nothing@ if they are not.
matchTypes :: TypeRep a -> TypeRep b -> Maybe (Equal a b)
matchTypes Integer Integer = Just Reflexivity
matchTypes Char Char = Just Reflexivity
matchTypes (List a) (List b) = Induction <$> (matchTypes a b)
matchTypes (Maybe a) (Maybe b) = Induction <$> (matchTypes a b)
matchTypes _ _ = Nothing
instance Show (TypeRep a) where
show Integer = "Integer"
show Char = "Char"
show (List a) = "[" ++ show a ++ "]"
show (Maybe a) = "Maybe (" ++ show a ++ ")"
----------------------------------------------------------------
----------------------------------------------------------------
--
-- Dynamic data
--
data Dynamic where
Dyn :: TypeRep a -> a -> Dynamic
instance Show Dynamic where
show (Dyn typ val) = "Dyn " ++ show typ
-- | Inject a value of a @Representable@ type into @Dynamic@.
toDynamic :: Representable a => a -> Dynamic
toDynamic = Dyn typeRep
-- | Cast a @Dynamic@ into a @Representable@ type.
fromDynamic :: Representable a => Dynamic -> Maybe a
fromDynamic = fromDynamic' typeRep
fromDynamic' :: TypeRep a -> Dynamic -> Maybe a
fromDynamic' target (Dyn source value) =
case matchTypes source target of
Just Reflexivity -> Just value
Nothing -> Nothing
-- The following pattern causes compilation to fail.
Just (Induction _) -> Just value
然而,在最后一行(我的行号与示例不匹配)的编译失败了:
../src/Dyn.hs:105:34:
Could not deduce (a2 ~ b)
from the context (a1 ~ f a2, a ~ f b)
bound by a pattern with constructor
Induction :: forall a b (f :: * -> *).
Equal a b -> Equal (f a) (f b),
in a case alternative
at ../src/Dyn.hs:105:13-23
`a2' is a rigid type variable bound by
a pattern with constructor
Induction :: forall a b (f :: * -> *).
Equal a b -> Equal (f a) (f b),
in a case alternative
at ../src/Dyn.hs:105:13
`b' is a rigid type variable bound by
a pattern with constructor
Induction :: forall a b (f :: * -> *).
Equal a b -> Equal (f a) (f b),
in a case alternative
at ../src/Dyn.hs:105:13
Expected type: a1
Actual type: a
In the first argument of `Just', namely `value'
In the expression: Just value
In a case alternative: Just (Induction _) -> Just value
我读这篇文章的方式,编译器无法确定Inductive :: Equal a b -> Equal (f a) (f b)
,a
和b
对于非底值必须相等。所以我尝试Inductive :: Equal a a -> Equal (f a) (f a)
,但在matchTypes :: TypeRep a -> TypeRep b -> Maybe (Equal a b)
的定义中也失败了:
../src/Dyn.hs:66:60:
Could not deduce (a2 ~ a1)
from the context (a ~ [a1])
bound by a pattern with constructor
List :: forall a. TypeRep a -> TypeRep [a],
in an equation for `matchTypes'
at ../src/Dyn.hs:66:13-18
or from (b ~ [a2])
bound by a pattern with constructor
List :: forall a. TypeRep a -> TypeRep [a],
in an equation for `matchTypes'
at ../src/Dyn.hs:66:22-27
`a2' is a rigid type variable bound by
a pattern with constructor
List :: forall a. TypeRep a -> TypeRep [a],
in an equation for `matchTypes'
at ../src/Dyn.hs:66:22
`a1' is a rigid type variable bound by
a pattern with constructor
List :: forall a. TypeRep a -> TypeRep [a],
in an equation for `matchTypes'
at ../src/Dyn.hs:66:13
Expected type: TypeRep a1
Actual type: TypeRep a
In the second argument of `matchTypes', namely `b'
In the second argument of `(<$>)', namely `(matchTypes a b)'
更改matchTypes :: TypeRep a -> TypeRep b -> Maybe (Equal a b)
的类型以生成matchTypes :: TypeRep a -> TypeRep b -> Maybe (Equal a a)
不起作用(只需将其作为命题阅读)。 matchTypes :: TypeRep a -> TypeRep a -> Maybe (Equal a a)
(另一个琐碎的命题,并且根据我的理解,这将需要fromDynamic' to know the
in the
TypeRep contained in the
动态`的用户。)
所以,我很难过。关于如何向前推进的任何指示?
答案 0 :(得分:8)
问题是您的模式的通配符模式会丢失相等信息。如果以这种方式编码归纳,则无法编写涵盖所有情况的(有限)模式集合。解决方案是将感应从您的数据类型转移到定义的值。相关变化如下:
data Equal a b where
Reflexivity :: Equal a a
induction :: Equal a b -> Equal (f a) (f b)
induction Reflexivity = Reflexivity
matchTypes (List a) (List b) = induction <$> matchTypes a b
matchTypes (Maybe a) (Maybe b) = induction <$> matchTypes a b
fromDynamic' :: TypeRep a -> Dynamic -> Maybe a
fromDynamic' target (Dyn source value) =
case matchTypes source target of
Just Reflexivity -> Just value
Nothing -> Nothing
这样fromDynamic'
中的模式是详尽无遗的,但没有任何信息丢失的通配符。