关于cuddpp的紧凑操作

时间:2012-06-01 17:48:21

标签: cuda gpu gpgpu gpu-programming

以下内核函数是cudpp中的一个紧凑操作,一个cuda库(http://gpgpu.org/developer/cudpp)。

我的问题是为什么开发者重复写作部分8次?为什么它可以改善性能?

为什么一个线程处理8个元素,为什么每个线程都不处理一个元素?

template <class T, bool isBackward>
__global__ void compactData(T                  *d_out, 
                        size_t             *d_numValidElements,
                        const unsigned int *d_indices, // Exclusive Sum-Scan Result
                        const unsigned int *d_isValid,
                        const T            *d_in,
                        unsigned int       numElements)
{
  if (threadIdx.x == 0)
  {
        if (isBackward)
            d_numValidElements[0] = d_isValid[0] + d_indices[0];
    else
        d_numValidElements[0] = d_isValid[numElements-1] + d_indices[numElements-1];
   }

   // The index of the first element (in a set of eight) that this
   // thread is going to set the flag for. We left shift
   // blockDim.x by 3 since (multiply by 8) since each block of 
   // threads processes eight times the number of threads in that
   // block
   unsigned int iGlobal = blockIdx.x * (blockDim.x << 3) + threadIdx.x;

   // Repeat the following 8 (SCAN_ELTS_PER_THREAD) times
   // 1. Check if data in input array d_in is null
   // 2. If yes do nothing
   // 3. If not write data to output data array d_out in
   //    the position specified by d_isValid
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;  
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];       
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
   iGlobal += blockDim.x;
   if (iGlobal < numElements && d_isValid[iGlobal] > 0) {
       d_out[d_indices[iGlobal]] = d_in[iGlobal];
   }
}

1 个答案:

答案 0 :(得分:1)

  

我的问题是为什么开发者重复写作部分8次?为什么它可以改善性能?

正如@torrential_coding所述,循环展开可以帮助提高性能。特别是在这种情况下,循环非常紧密(它的逻辑很少)。但是,编码器应该使用CUDA支持自动循环展开而不是手动执行。

  

为什么一个线程处理8个元素,为什么每个线程都不处理一个元素?

在计算iGlobal的完整索引并且每8次操作而不是每次操作检查threadIdx.x为零时,可能会有一些小的性能提升,如果每个内核只执行一个元素,则必须这样做。