我正在尝试将照片作为matplotlib中的背景。我设法添加照片,其大小为273 x 272像素。然后我添加一个30 x 30大的等高线图。如果我注释掉绘制照片的线条,则轮廓图将覆盖整个绘图区域。
如果我包含照片,轮廓图将显示在左下角。它看起来像是沿着每个轴绘制在整个画布的约30/272的分数上。我想要的是让轮廓图覆盖整张照片。
这些是代码的相关部分(不是完整的工作示例):
# Matplotlib Figure object
from matplotlib.figure import Figure
# import the Qt4Agg FigureCanvas object, that binds Figure to
# Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg \
import FigureCanvasQTAgg as FigureCanvas
from PIL import Image
.....
class Qt4ContourCanvas(FigureCanvas):
def __init__(self, Z_matrix, plot_freq, p2_freq, p2_power, ws_level, p2_patch_on, pmin, pmax, my_alpha, parent=None):
global p2_frequency
logger.debug("%s - created" % self.__class__.__name__)
self.fig = Figure(facecolor='Lavender')
self.axes = self.fig.add_subplot(111)
#Reduce the size of the borders
#http://stackoverflow.com/questions/1203639/how-do-i-limit-the-border-size-on-a-matplotlib-graph
self.fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=1-0.05,
wspace=0.01, hspace=0.01)
# We need to keep a class variable of Z to prevent it going out of scope
self.Z = Z_matrix
............
def drawContourPlot(self, Z_matrix, plot_freq, p2_freq, p2_power, ws_level, p2_patch_on, pmin, pmax, my_alpha):
"Method to plot contour plots"
global p2_frequency
p2_frequency = p2_freq
self.axes.cla()
self.Z = Z_matrix
map_dimensions = Z_matrix.shape
my_xdim = map_dimensions[0]
my_ydim = map_dimensions[1]
levels = np.arange(pmin, pmax, 2.5)
DIM = len(self.Z)
x = y = np.arange(0, DIM, 1)
X, Y = np.meshgrid(x, y)
my_cm = ListedColormap(faramir_cm)
# Background picture
picture = Image.open('gondor.png')
CSbkgr = self.axes.imshow(picture, origin='lower')
# Swap X and Y to transpose the data, otherwise the click event
# and the matrix coordinates do not agree
CS = self.axes.contourf(Y, X, self.Z, levels, cmap=my_cm, alpha=my_alpha)
CS2 = self.axes.contour(CS, levels=CS.levels, colors = 'r', hold='on')
self.axes.clabel(CS2, fontsize=10, inline=1, fmt='%1.1f')
CS3 = self.axes.contour(CS, levels=[ws_level], colors = 'black', hold='on', linestyles = 'solid', linewidths = 2)
self.axes.clabel(CS3, fontsize=12, inline=1, fmt='%1.1f')
self.axes.grid(True, color='white')
self.fig.canvas.draw()
答案 0 :(得分:1)
您可以重新缩放轮廓图以使其正确拟合: 而不是(左下角的彩色圆点是未缩放的等高线图......): 代码:
import Image
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
#contour plot test data:
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
plt.figure()
im = Image.open('tree_small.png')
plt.imshow(im, origin='lower')
#rescale contour plot:
X = X - np.min(X)
X = X * im.size[0] / np.max(X)
Y = Y - np.min(Y)
Y = Y * im.size[1] / np.max(Y)
plt.contour(X, Y, Z, 20)
plt.show()
可能你可以使用不同的轴在顶部叠加轮廓图,但这似乎是最快的方式;)