使用ggplot2生成此基本情节:这是ggplot2错误吗?

时间:2012-05-29 23:20:30

标签: r ggplot2

我正在尝试绘制这个基本情节

df <-
structure(list(X = c(1e-04, 2e-04, 3e-04, 4e-04, 5e-04, 6e-04,
7e-04, 8e-04, 9e-04, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.0051, 0.0052, 0.0053, 0.0054, 0.0055,
0.0056, 0.0057, 0.0058, 0.0059, 0.006, 0.0061, 0.0062, 0.0063,
0.0064, 0.0065, 0.0066, 0.0067, 0.0068, 0.0069, 0.007, 0.0071,
0.0072, 0.0073, 0.0074, 0.0075, 0.0076, 0.0077, 0.0078, 0.0079,
0.008, 0.0081, 0.0082, 0.0083, 0.0084, 0.0085, 0.0086, 0.0087,
0.0088, 0.0089, 0.009, 0.0091, 0.0092, 0.0093, 0.0094, 0.0095,
0.0096, 0.0097, 0.0098, 0.0099, 0.01, 0.0101, 0.0102, 0.0103,
0.0104, 0.0105, 0.0106, 0.0107, 0.0108, 0.0109, 0.011, 0.0111,
0.0112, 0.0113, 0.0114, 0.0115, 0.0116, 0.0117, 0.0118, 0.0119,
0.012, 0.0121, 0.0122, 0.0123, 0.0124, 0.0125, 0.0126, 0.0127,
0.0128, 0.0129, 0.013, 0.0131, 0.0132, 0.0133, 0.0134, 0.0135,
0.0136, 0.0137, 0.0138, 0.0139, 0.014, 0.0141, 0.0142, 0.0143,
0.0144, 0.0145, 0.0146, 0.0147, 0.0148, 0.0149, 0.015, 0.0151,
0.0152, 0.0153, 0.0154, 0.0155, 0.0156, 0.0157, 0.0158, 0.0159,
0.016, 0.0161, 0.0162, 0.0163, 0.0164, 0.0165, 0.0166, 0.0167,
0.0168, 0.0169, 0.017, 0.0171, 0.0172, 0.0173, 0.0174, 0.0175,
0.0176, 0.0177, 0.0178, 0.0179, 0.018, 0.0181, 0.0182, 0.0183,
0.0184, 0.0185, 0.0186, 0.0187, 0.0188, 0.0189, 0.019, 0.0191,
0.0192, 0.0193, 0.0194, 0.0195, 0.0196, 0.0197, 0.0198, 0.0199,
0.02, 0.0201, 0.0202, 0.0203, 0.0204, 0.0205, 0.0206, 0.0207,
0.0208, 0.0209, 0.021, 0.0211, 0.0212, 0.0213, 0.0214, 0.0215,
0.0216, 0.0217, 0.0218, 0.0219, 0.022, 0.0221, 0.0222, 0.0223,
0.0224, 0.0225, 0.0226, 0.0227, 0.0228, 0.0229, 0.023, 0.0231,
0.0232, 0.0233, 0.0234, 0.0235, 0.0236, 0.0237, 0.0238, 0.0239,
0.024, 0.0241, 0.0242, 0.0243, 0.0244, 0.0245, 0.0246, 0.0247,
0.0248, 0.0249, 0.025, 0.0251, 0.0252, 0.0253, 0.0254, 0.0255,
0.0256, 0.0257, 0.0258, 0.0259, 0.026, 0.0261, 0.0262, 0.0263,
0.0264, 0.0265, 0.0266, 0.0267, 0.0268, 0.0269, 0.027, 0.0271,
0.0272, 0.0273, 0.0274, 0.0275, 0.0276, 0.0277, 0.0278, 0.0279,
0.028, 0.0281, 0.0282, 0.0283, 0.0284, 0.0285, 0.0286, 0.0287,
0.0288, 0.0289, 0.029, 0.0291, 0.0292, 0.0293, 0.0294, 0.0295,
0.0296, 0.0297, 0.0298, 0.0299, 0.03, 0.0301, 0.0302, 0.0303,
0.0304, 0.0305, 0.0306, 0.0307, 0.0308, 0.0309, 0.031, 0.0311,
0.0312, 0.0313, 0.0314, 0.0315, 0.0316, 0.0317, 0.0318, 0.0319,
0.032, 0.0321, 0.0322, 0.0323, 0.0324, 0.0325, 0.0326, 0.0327,
0.0328, 0.0329, 0.033, 0.0331, 0.0332, 0.0333, 0.0334, 0.0335,
0.0336, 0.0337, 0.0338, 0.0339, 0.034, 0.0341, 0.0342, 0.0343,
0.0344, 0.0345, 0.0346, 0.0347, 0.0348, 0.0349, 0.035, 0.0351,
0.0352, 0.0353, 0.0354, 0.0355, 0.0356, 0.0357, 0.0358, 0.0359,
0.036, 0.0361, 0.0362, 0.0363, 0.0364, 0.0365, 0.0366, 0.0367,
0.0368, 0.0369, 0.037, 0.0371, 0.0372, 0.0373, 0.0374, 0.0375,
0.0376, 0.0377, 0.0378, 0.0379, 0.038, 0.0381, 0.0382, 0.0383,
0.0384, 0.0385, 0.0386, 0.0387, 0.0388, 0.0389, 0.039, 0.0391,
0.0392, 0.0393, 0.0394, 0.0395, 0.0396, 0.0397, 0.0398, 0.0399,
0.04, 0.0401, 0.0402, 0.0403, 0.0404, 0.0405, 0.0406, 0.0407,
0.0408, 0.0409, 0.041, 0.0411, 0.0412, 0.0413, 0.0414, 0.0415,
0.0416, 0.0417, 0.0418, 0.0419, 0.042, 0.0421, 0.0422, 0.0423,
0.0424, 0.0425, 0.0426, 0.0427, 0.0428, 0.0429, 0.043, 0.0431,
0.0432, 0.0433, 0.0434, 0.0435, 0.0436, 0.0437, 0.0438, 0.0439,
0.044, 0.0441, 0.0442, 0.0443, 0.0444, 0.0445, 0.0446, 0.0447,
0.0448, 0.0449, 0.045, 0.0451, 0.0452, 0.0453, 0.0454, 0.0455,
0.0456, 0.0457, 0.0458, 0.0459, 0.046, 0.0461, 0.0462, 0.0463,
0.0464, 0.0465, 0.0466, 0.0467, 0.0468, 0.0469, 0.047, 0.0471,
0.0472, 0.0473, 0.0474, 0.0475, 0.0476, 0.0477, 0.0478, 0.0479,
0.048, 0.0481, 0.0482, 0.0483, 0.0484, 0.0485, 0.0486, 0.0487,
0.0488, 0.0489, 0.049, 0.0491, 0.0492, 0.0493, 0.0494, 0.0495,
0.0496, 0.0497, 0.0498, 0.0499, 0.05, 0.0501, 0.0502, 0.0503,
0.0504, 0.0505, 0.0506, 0.0507, 0.0508, 0.0509, 0.051, 0.0511,
0.0512, 0.0513, 0.0514, 0.0515, 0.0516, 0.0517, 0.0518, 0.0519,
0.052, 0.0521, 0.0522, 0.0523, 0.0524, 0.0525, 0.0526, 0.0527,
0.0528, 0.0529, 0.053, 0.0531, 0.0532, 0.0533, 0.0534, 0.0535,
0.0536, 0.0537, 0.0538, 0.0539, 0.054, 0.0541, 0.0542, 0.0543,
0.0544, 0.0545, 0.0546, 0.0547, 0.0548, 0.0549, 0.055, 0.0551,
0.0552, 0.0553, 0.0554, 0.0555, 0.0556, 0.0557, 0.0558, 0.0559,
0.056, 0.0561, 0.0562, 0.0563, 0.0564, 0.0565, 0.0566, 0.0567,
0.0568, 0.0569, 0.057, 0.0571, 0.0572, 0.0573, 0.0574, 0.0575,
0.0576, 0.0577, 0.0578, 0.0579, 0.058, 0.0581, 0.0582, 0.0583,
0.0584, 0.0585, 0.0586, 0.0587, 0.0588, 0.0589, 0.059, 0.0591,
0.0592, 0.0593, 0.0594, 0.0595, 0.0596, 0.0597, 0.0598, 0.0599,
0.06, 0.0601, 0.0602, 0.0603, 0.0604, 0.0605, 0.0606, 0.0607,
0.0608, 0.0609, 0.061, 0.0611, 0.0612, 0.0613, 0.0614, 0.0615,
0.0616, 0.0617, 0.0618, 0.0619, 0.062, 0.0621, 0.0622, 0.0623,
0.0624, 0.0625, 0.0626, 0.0627, 0.0628, 0.0629, 0.063, 0.0631,
0.0632, 0.0633, 0.0634, 0.0635, 0.0636, 0.0637, 0.0638, 0.0639,
0.064, 0.0641, 0.0642, 0.0643, 0.0644, 0.0645, 0.0646, 0.0647,
0.0648, 0.0649, 0.065, 0.0651, 0.0652, 0.0653, 0.0654, 0.0655,
0.0656, 0.0657, 0.0658, 0.0659, 0.066, 0.0661, 0.0662, 0.0663,
0.0664, 0.0665, 0.0666, 0.0667, 0.0668, 0.0669, 0.067, 0.0671,
0.0672, 0.0673, 0.0674, 0.0675, 0.0676, 0.0677, 0.0678, 0.0679,
0.068, 0.0681, 0.0682, 0.0683, 0.0684, 0.0685, 0.0686, 0.0687,
0.0688, 0.0689, 0.069, 0.0691, 0.0692, 0.0693, 0.0694, 0.0695,
0.0696, 0.0697, 0.0698, 0.0699, 0.07, 0.0701, 0.0702, 0.0703,
0.0704, 0.0705, 0.0706, 0.0707, 0.0708, 0.0709, 0.071, 0.0711,
0.0712, 0.0713, 0.0714, 0.0715, 0.0716, 0.0717, 0.0718, 0.0719,
0.072, 0.0721, 0.0722, 0.0723, 0.0724, 0.0725, 0.0726, 0.0727,
0.0728, 0.0729, 0.073, 0.0731, 0.0732, 0.0733, 0.0734, 0.0735,
0.0736, 0.0737, 0.0738, 0.0739, 0.074, 0.0741, 0.0742, 0.0743,
0.0744, 0.0745, 0.0746, 0.0747, 0.0748, 0.0749, 0.075, 0.0751,
0.0752, 0.0753, 0.0754, 0.0755, 0.0756, 0.0757, 0.0758, 0.0759,
0.076, 0.0761, 0.0762, 0.0763, 0.0764, 0.0765, 0.0766, 0.0767,
0.0768, 0.0769, 0.077, 0.0771, 0.0772, 0.0773, 0.0774, 0.0775,
0.0776, 0.0777, 0.0778, 0.0779, 0.078, 0.0781, 0.0782, 0.0783,
0.0784, 0.0785, 0.0786, 0.0787, 0.0788, 0.0789, 0.079, 0.0791,
0.0792, 0.0793, 0.0794, 0.0795, 0.0796, 0.0797, 0.0798, 0.0799,
0.08, 0.0801, 0.0802, 0.0803, 0.0804, 0.0805, 0.0806, 0.0807,
0.0808, 0.0809, 0.081, 0.0811, 0.0812, 0.0813, 0.0814, 0.0815,
0.0816, 0.0817, 0.0818, 0.0819, 0.082, 0.0821, 0.0822, 0.0823,
0.0824, 0.0825, 0.0826, 0.0827, 0.0828, 0.0829, 0.083, 0.0831,
0.0832, 0.0833, 0.0834, 0.0835, 0.0836, 0.0837, 0.0838, 0.0839,
0.084, 0.0841, 0.0842, 0.0843, 0.0844, 0.0845, 0.0846, 0.0847,
0.0848, 0.0849, 0.085, 0.0851, 0.0852, 0.0853, 0.0854, 0.0855,
0.0856, 0.0857, 0.0858, 0.0859, 0.086, 0.0861, 0.0862, 0.0863,
0.0864, 0.0865, 0.0866, 0.0867, 0.0868, 0.0869, 0.087, 0.0871,
0.0872, 0.0873, 0.0874, 0.0875, 0.0876, 0.0877, 0.0878, 0.0879,
0.088, 0.0881, 0.0882, 0.0883, 0.0884, 0.0885, 0.0886, 0.0887,
0.0888, 0.0889, 0.089, 0.0891, 0.0892, 0.0893, 0.0894, 0.0895,
0.0896, 0.0897, 0.0898, 0.0899, 0.09, 0.0901, 0.0902, 0.0903,
0.0904, 0.0905, 0.0906, 0.0907, 0.0908, 0.0909, 0.091, 0.0911,
0.0912, 0.0913, 0.0914, 0.0915, 0.0916, 0.0917, 0.0918, 0.0919,
0.092, 0.0921, 0.0922, 0.0923, 0.0924, 0.0925, 0.0926, 0.0927,
0.0928, 0.0929, 0.093, 0.0931, 0.0932, 0.0933, 0.0934, 0.0935,
0.0936, 0.0937, 0.0938, 0.0939, 0.094, 0.0941, 0.0942, 0.0943,
0.0944, 0.0945, 0.0946, 0.0947, 0.0948, 0.0949, 0.095, 0.0951,
0.0952, 0.0953, 0.0954, 0.0955, 0.0956, 0.0957, 0.0958, 0.0959,
0.096, 0.0961, 0.0962, 0.0963, 0.0964, 0.0965, 0.0966, 0.0967,
0.0968, 0.0969, 0.097, 0.0971, 0.0972, 0.0973, 0.0974, 0.0975,
0.0976, 0.0977, 0.0978, 0.0979, 0.098, 0.0981, 0.0982, 0.0983,
0.0984, 0.0985, 0.0986, 0.0987, 0.0988, 0.0989, 0.099, 0.0991,
0.0992, 0.0993, 0.0994, 0.0995, 0.0996, 0.0997, 0.0998, 0.0999,
0.1), Y = c(3.9e-125, 1.47e-124, 3.1e-124, 5.19e-124, 7.62e-124,
1.03e-123, 1.32e-123, 1.62e-123, 1.93e-123, 2.24e-123, 2.55e-123,
2.86e-123, 3.15e-123, 3.44e-123, 3.71e-123, 3.97e-123, 4.21e-123,
4.44e-123, 4.66e-123, 4.85e-123, 5.03e-123, 5.19e-123, 5.33e-123,
5.46e-123, 5.57e-123, 5.67e-123, 5.75e-123, 5.81e-123, 5.86e-123,
5.9e-123, 5.92e-123, 5.93e-123, 5.93e-123, 5.92e-123, 5.9e-123,
5.87e-123, 5.83e-123, 5.78e-123, 5.73e-123, 5.67e-123, 5.6e-123,
5.52e-123, 5.44e-123, 5.36e-123, 5.27e-123, 5.18e-123, 5.08e-123,
4.98e-123, 4.88e-123, 4.78e-123, 4.68e-123, 4.57e-123, 4.46e-123,
4.36e-123, 4.25e-123, 4.14e-123, 4.03e-123, 3.93e-123, 3.82e-123,
3.72e-123, 3.61e-123, 3.51e-123, 3.4e-123, 3.3e-123, 3.2e-123,
3.1e-123, 3.01e-123, 2.91e-123, 2.82e-123, 2.73e-123, 2.64e-123,
2.55e-123, 2.46e-123, 2.38e-123, 2.3e-123, 2.22e-123, 2.14e-123,
2.07e-123, 1.99e-123, 1.92e-123, 1.85e-123, 1.78e-123, 1.72e-123,
1.65e-123, 1.59e-123, 1.53e-123, 1.47e-123, 1.42e-123, 1.36e-123,
1.31e-123, 1.26e-123, 1.21e-123, 1.16e-123, 1.12e-123, 1.07e-123,
1.03e-123, 9.87e-124, 9.47e-124, 9.08e-124, 8.71e-124, 8.35e-124,
8.01e-124, 7.67e-124, 7.35e-124, 7.04e-124, 6.75e-124, 6.46e-124,
6.19e-124, 5.93e-124, 5.67e-124, 5.43e-124, 5.19e-124, 4.97e-124,
4.75e-124, 4.55e-124, 4.35e-124, 4.16e-124, 3.98e-124, 3.8e-124,
3.63e-124, 3.47e-124, 3.32e-124, 3.17e-124, 3.03e-124, 2.89e-124,
2.76e-124, 2.63e-124, 2.52e-124, 2.4e-124, 2.29e-124, 2.19e-124,
2.09e-124, 1.99e-124, 1.9e-124, 1.81e-124, 1.73e-124, 1.65e-124,
1.57e-124, 1.5e-124, 1.43e-124, 1.36e-124, 1.3e-124, 1.24e-124,
1.18e-124, 1.12e-124, 1.07e-124, 1.02e-124, 9.71e-125, 9.25e-125,
8.81e-125, 8.39e-125, 7.98e-125, 7.6e-125, 7.24e-125, 6.89e-125,
6.56e-125, 6.24e-125, 5.94e-125, 5.65e-125, 5.38e-125, 5.12e-125,
4.87e-125, 4.63e-125, 4.41e-125, 4.19e-125, 3.98e-125, 3.79e-125,
3.6e-125, 3.43e-125, 3.26e-125, 3.1e-125, 2.94e-125, 2.8e-125,
2.66e-125, 2.53e-125, 2.4e-125, 2.28e-125, 2.17e-125, 2.06e-125,
1.96e-125, 1.86e-125, 1.77e-125, 1.68e-125, 1.59e-125, 1.51e-125,
1.44e-125, 1.37e-125, 1.3e-125, 1.23e-125, 1.17e-125, 1.11e-125,
1.05e-125, 1e-125, 9.5e-126, 9.02e-126, 8.56e-126, 8.12e-126,
7.71e-126, 7.32e-126, 6.94e-126, 6.59e-126, 6.25e-126, 5.93e-126,
5.63e-126, 5.34e-126, 5.06e-126, 4.8e-126, 4.55e-126, 4.32e-126,
4.1e-126, 3.89e-126, 3.68e-126, 3.49e-126, 3.31e-126, 3.14e-126,
2.98e-126, 2.82e-126, 2.68e-126, 2.54e-126, 2.41e-126, 2.28e-126,
2.16e-126, 2.05e-126, 1.94e-126, 1.84e-126, 1.74e-126, 1.65e-126,
1.57e-126, 1.48e-126, 1.41e-126, 1.33e-126, 1.26e-126, 1.2e-126,
1.13e-126, 1.07e-126, 1.02e-126, 9.63e-127, 9.12e-127, 8.64e-127,
8.18e-127, 7.75e-127, 7.34e-127, 6.95e-127, 6.58e-127, 6.23e-127,
5.9e-127, 5.59e-127, 5.29e-127, 5.01e-127, 4.74e-127, 4.49e-127,
4.25e-127, 4.03e-127, 3.81e-127, 3.61e-127, 3.41e-127, 3.23e-127,
3.06e-127, 2.89e-127, 2.74e-127, 2.59e-127, 2.45e-127, 2.32e-127,
2.2e-127, 2.08e-127, 1.97e-127, 1.86e-127, 1.76e-127, 1.67e-127,
1.58e-127, 1.49e-127, 1.41e-127, 1.33e-127, 1.26e-127, 1.19e-127,
1.13e-127, 1.07e-127, 1.01e-127, 9.56e-128, 9.04e-128, 8.55e-128,
8.09e-128, 7.65e-128, 7.23e-128, 6.84e-128, 6.47e-128, 6.12e-128,
5.78e-128, 5.47e-128, 5.17e-128, 4.89e-128, 4.62e-128, 4.37e-128,
4.13e-128, 3.91e-128, 3.69e-128, 3.49e-128, 3.3e-128, 3.12e-128,
2.95e-128, 2.79e-128, 2.63e-128, 2.49e-128, 2.35e-128, 2.22e-128,
2.1e-128, 1.99e-128, 1.88e-128, 1.77e-128, 1.68e-128, 1.58e-128,
1.5e-128, 1.41e-128, 1.34e-128, 1.26e-128, 1.19e-128, 1.13e-128,
1.06e-128, 1.01e-128, 9.5e-129, 8.98e-129, 8.48e-129, 8.01e-129,
7.57e-129, 7.15e-129, 6.75e-129, 6.38e-129, 6.02e-129, 5.69e-129,
5.37e-129, 5.08e-129, 4.79e-129, 4.53e-129, 4.28e-129, 4.04e-129,
3.81e-129, 3.6e-129, 3.4e-129, 3.21e-129, 3.03e-129, 2.86e-129,
2.7e-129, 2.55e-129, 2.41e-129, 2.28e-129, 2.15e-129, 2.03e-129,
1.92e-129, 1.81e-129, 1.71e-129, 1.61e-129, 1.52e-129, 1.44e-129,
1.36e-129, 1.28e-129, 1.21e-129, 1.14e-129, 1.08e-129, 1.02e-129,
9.59e-130, 9.05e-130, 8.54e-130, 8.06e-130, 7.61e-130, 7.18e-130,
6.78e-130, 6.4e-130, 6.04e-130, 5.7e-130, 5.38e-130, 5.07e-130,
4.79e-130, 4.52e-130, 4.26e-130, 4.02e-130, 3.8e-130, 3.58e-130,
3.38e-130, 3.19e-130, 3.01e-130, 2.84e-130, 2.68e-130, 2.53e-130,
2.38e-130, 2.25e-130, 2.12e-130, 2e-130, 1.89e-130, 1.78e-130,
1.68e-130, 1.58e-130, 1.49e-130, 1.41e-130, 1.33e-130, 1.25e-130,
1.18e-130, 1.12e-130, 1.05e-130, 9.92e-131, 9.36e-131, 8.83e-131,
8.32e-131, 7.85e-131, 7.4e-131, 6.98e-131, 6.58e-131, 6.21e-131,
5.85e-131, 5.52e-131, 5.21e-131, 4.91e-131, 4.63e-131, 4.36e-131,
4.12e-131, 3.88e-131, 3.66e-131, 3.45e-131, 3.25e-131, 3.07e-131,
2.89e-131, 2.73e-131, 2.57e-131, 2.42e-131, 2.28e-131, 2.15e-131,
2.03e-131, 1.91e-131, 1.8e-131, 1.7e-131, 1.6e-131, 1.51e-131,
1.42e-131, 1.34e-131, 1.27e-131, 1.19e-131, 1.12e-131, 1.06e-131,
9.99e-132, 9.41e-132, 8.87e-132, 8.36e-132, 7.88e-132, 7.43e-132,
7e-132, 6.59e-132, 6.22e-132, 5.86e-132, 5.52e-132, 5.2e-132,
4.9e-132, 4.62e-132, 4.35e-132, 4.1e-132, 3.86e-132, 3.64e-132,
3.43e-132, 3.23e-132, 3.05e-132, 2.87e-132, 2.7e-132, 2.55e-132,
2.4e-132, 2.26e-132, 2.13e-132, 2.01e-132, 1.89e-132, 1.78e-132,
1.68e-132, 1.58e-132, 1.49e-132, 1.4e-132, 1.32e-132, 1.25e-132,
1.17e-132, 1.11e-132, 1.04e-132, 9.81e-133, 9.24e-133, 8.7e-133,
8.19e-133, 7.72e-133, 7.27e-133, 6.85e-133, 6.45e-133, 6.07e-133,
5.72e-133, 5.39e-133, 5.07e-133, 4.78e-133, 4.5e-133, 4.24e-133,
3.99e-133, 3.76e-133, 3.54e-133, 3.33e-133, 3.14e-133, 2.96e-133,
2.78e-133, 2.62e-133, 2.47e-133, 2.32e-133, 2.19e-133, 2.06e-133,
1.94e-133, 1.83e-133, 1.72e-133, 1.62e-133, 1.53e-133, 1.44e-133,
1.35e-133, 1.27e-133, 1.2e-133, 1.13e-133, 1.06e-133, 1e-133,
9.42e-134, 8.87e-134, 8.35e-134, 7.86e-134, 7.4e-134, 6.96e-134,
6.56e-134, 6.17e-134, 5.81e-134, 5.47e-134, 5.15e-134, 4.85e-134,
4.56e-134, 4.29e-134, 4.04e-134, 3.8e-134, 3.58e-134, 3.37e-134,
3.17e-134, 2.99e-134, 2.81e-134, 2.64e-134, 2.49e-134, 2.34e-134,
2.2e-134, 2.08e-134, 1.95e-134, 1.84e-134, 1.73e-134, 1.63e-134,
1.53e-134, 1.44e-134, 1.36e-134, 1.28e-134, 1.2e-134, 1.13e-134,
1.06e-134, 1e-134, 9.42e-135, 8.86e-135, 8.34e-135, 7.85e-135,
7.39e-135, 6.95e-135, 6.54e-135, 6.15e-135, 5.79e-135, 5.45e-135,
5.12e-135, 4.82e-135, 4.54e-135, 4.27e-135, 4.02e-135, 3.78e-135,
3.55e-135, 3.34e-135, 3.15e-135, 2.96e-135, 2.78e-135, 2.62e-135,
2.46e-135, 2.32e-135, 2.18e-135, 2.05e-135, 1.93e-135, 1.82e-135,
1.71e-135, 1.61e-135, 1.51e-135, 1.42e-135, 1.34e-135, 1.26e-135,
1.18e-135, 1.11e-135, 1.05e-135, 9.84e-136, 9.26e-136, 8.71e-136,
8.19e-136, 7.7e-136, 7.25e-136, 6.81e-136, 6.41e-136, 6.03e-136,
5.67e-136, 5.33e-136, 5.01e-136, 4.72e-136, 4.43e-136, 4.17e-136,
3.92e-136, 3.69e-136, 3.47e-136, 3.26e-136, 3.07e-136, 2.88e-136,
2.71e-136, 2.55e-136, 2.4e-136, 2.26e-136, 2.12e-136, 1.99e-136,
1.87e-136, 1.76e-136, 1.66e-136, 1.56e-136, 1.47e-136, 1.38e-136,
1.3e-136, 1.22e-136, 1.15e-136, 1.08e-136, 1.01e-136, 9.52e-137,
8.95e-137, 8.41e-137, 7.91e-137, 7.44e-137, 6.99e-137, 6.57e-137,
6.18e-137, 5.81e-137, 5.46e-137, 5.13e-137, 4.83e-137, 4.54e-137,
4.26e-137, 4.01e-137, 3.77e-137, 3.54e-137, 3.33e-137, 3.13e-137,
2.94e-137, 2.77e-137, 2.6e-137, 2.44e-137, 2.3e-137, 2.16e-137,
2.03e-137, 1.91e-137, 1.79e-137, 1.68e-137, 1.58e-137, 1.49e-137,
1.4e-137, 1.31e-137, 1.24e-137, 1.16e-137, 1.09e-137, 1.03e-137,
9.64e-138, 9.06e-138, 8.51e-138, 8e-138, 7.52e-138, 7.07e-138,
6.64e-138, 6.24e-138, 5.86e-138, 5.51e-138, 5.18e-138, 4.87e-138,
4.57e-138, 4.3e-138, 4.04e-138, 3.79e-138, 3.56e-138, 3.35e-138,
3.15e-138, 2.96e-138, 2.78e-138, 2.61e-138, 2.45e-138, 2.31e-138,
2.17e-138, 2.04e-138, 1.91e-138, 1.8e-138, 1.69e-138, 1.59e-138,
1.49e-138, 1.4e-138, 1.32e-138, 1.24e-138, 1.16e-138, 1.09e-138,
1.02e-138, 9.62e-139, 9.04e-139, 8.49e-139, 7.98e-139, 7.5e-139,
7.04e-139, 6.61e-139, 6.21e-139, 5.84e-139, 5.48e-139, 5.15e-139,
4.84e-139, 4.55e-139, 4.27e-139, 4.01e-139, 3.77e-139, 3.54e-139,
3.32e-139, 3.12e-139, 2.93e-139, 2.75e-139, 2.59e-139, 2.43e-139,
2.28e-139, 2.14e-139, 2.01e-139, 1.89e-139, 1.78e-139, 1.67e-139,
1.57e-139, 1.47e-139, 1.38e-139, 1.3e-139, 1.22e-139, 1.14e-139,
1.07e-139, 1.01e-139, 9.48e-140, 8.9e-140, 8.36e-140, 7.85e-140,
7.37e-140, 6.92e-140, 6.5e-140, 6.1e-140, 5.73e-140, 5.38e-140,
5.05e-140, 4.75e-140, 4.46e-140, 4.19e-140, 3.93e-140, 3.69e-140,
3.46e-140, 3.25e-140, 3.05e-140, 2.87e-140, 2.69e-140, 2.53e-140,
2.37e-140, 2.23e-140, 2.09e-140, 1.97e-140, 1.84e-140, 1.73e-140,
1.63e-140, 1.53e-140, 1.43e-140, 1.35e-140, 1.26e-140, 1.19e-140,
1.11e-140, 1.05e-140, 9.81e-141, 9.21e-141, 8.65e-141, 8.12e-141,
7.62e-141, 7.16e-141, 6.72e-141, 6.31e-141, 5.92e-141, 5.56e-141,
5.22e-141, 4.9e-141, 4.6e-141, 4.31e-141, 4.05e-141, 3.8e-141,
3.57e-141, 3.35e-141, 3.14e-141, 2.95e-141, 2.77e-141, 2.6e-141,
2.44e-141, 2.29e-141, 2.15e-141, 2.02e-141, 1.89e-141, 1.78e-141,
1.67e-141, 1.57e-141, 1.47e-141, 1.38e-141, 1.29e-141, 1.21e-141,
1.14e-141, 1.07e-141, 1e-141, 9.42e-142, 8.84e-142, 8.3e-142,
7.79e-142, 7.31e-142, 6.86e-142, 6.44e-142, 6.04e-142, 5.67e-142,
5.32e-142, 4.99e-142, 4.68e-142, 4.39e-142, 4.12e-142, 3.87e-142,
3.63e-142, 3.41e-142, 3.2e-142, 3e-142, 2.81e-142, 2.64e-142,
2.48e-142, 2.33e-142, 2.18e-142, 2.05e-142, 1.92e-142, 1.8e-142,
1.69e-142, 1.59e-142, 1.49e-142, 1.4e-142, 1.31e-142, 1.23e-142,
1.15e-142, 1.08e-142, 1.01e-142, 9.52e-143, 8.93e-143, 8.38e-143,
7.86e-143, 7.38e-143, 6.92e-143, 6.49e-143, 6.09e-143, 5.71e-143,
5.36e-143, 5.03e-143, 4.72e-143, 4.42e-143, 4.15e-143, 3.89e-143,
3.65e-143, 3.43e-143, 3.21e-143, 3.01e-143, 2.83e-143, 2.65e-143,
2.49e-143, 2.33e-143, 2.19e-143, 2.05e-143, 1.93e-143, 1.81e-143,
1.69e-143, 1.59e-143, 1.49e-143, 1.4e-143, 1.31e-143, 1.23e-143,
1.15e-143, 1.08e-143, 1.01e-143, 9.51e-144, 8.92e-144, 8.37e-144,
7.85e-144, 7.36e-144, 6.9e-144, 6.47e-144, 6.07e-144, 5.69e-144,
5.34e-144, 5.01e-144, 4.7e-144, 4.4e-144, 4.13e-144, 3.87e-144,
3.63e-144, 3.41e-144, 3.19e-144, 2.99e-144, 2.81e-144, 2.63e-144,
2.47e-144, 2.32e-144, 2.17e-144, 2.04e-144, 1.91e-144, 1.79e-144,
1.68e-144, 1.57e-144, 1.48e-144, 1.38e-144, 1.3e-144, 1.22e-144,
1.14e-144, 1.07e-144, 1e-144, 9.4e-145, 8.81e-145, 8.26e-145,
7.75e-145, 7.26e-145, 6.81e-145, 6.38e-145, 5.99e-145, 5.61e-145,
5.26e-145, 4.93e-145, 4.62e-145, 4.33e-145, 4.06e-145, 3.81e-145,
3.57e-145, 3.35e-145, 3.14e-145, 2.94e-145, 2.76e-145, 2.59e-145,
2.42e-145, 2.27e-145, 2.13e-145, 2e-145, 1.87e-145, 1.75e-145,
1.64e-145, 1.54e-145, 1.44e-145, 1.35e-145, 1.27e-145, 1.19e-145,
1.12e-145, 1.05e-145, 9.8e-146, 9.18e-146, 8.61e-146, 8.07e-146,
7.56e-146, 7.09e-146, 6.64e-146, 6.23e-146, 5.84e-146, 5.47e-146,
5.13e-146, 4.8e-146, 4.5e-146, 4.22e-146, 3.95e-146, 3.71e-146,
3.47e-146, 3.26e-146, 3.05e-146, 2.86e-146, 2.68e-146, 2.51e-146,
2.35e-146, 2.21e-146, 2.07e-146, 1.94e-146, 1.81e-146, 1.7e-146,
1.59e-146, 1.49e-146, 1.4e-146, 1.31e-146, 1.23e-146, 1.15e-146,
1.08e-146, 1.01e-146, 9.47e-147, 8.88e-147, 8.32e-147, 7.79e-147,
7.3e-147, 6.84e-147, 6.41e-147, 6.01e-147, 5.63e-147)), .Names = c("X",
"Y"), class = "data.frame", row.names = c(NA, -1000L))

代码

plot(x=df$X, y=df$Y)

enter image description here

ggplot2

library(ggplot2)
library(scales)
p <- ggplot(data=df, aes(x=X, y=Y))+geom_point()
p

enter image description here

我无法弄清楚如何在ylim中设置ggplot2以获得正确的图表。任何帮助将受到高度赞赏。感谢

1 个答案:

答案 0 :(得分:5)

如果您绝对想要使用ggplot2,那么您可以使用缩放和标签来解决该问题,直到它被修复:

# a scaling constant
s <- 1E120

# scale Y to get around bug, but then unscale Y's labels
ggplot(df, aes(x=X, y=Y*s)) +
  geom_point() +
  scale_y_continuous(labels=function(x) as.character(x/s)) +
  ylab("Y")

enter image description here