public double Integral(double[] x, double intPointOne, double intPointTwo)
{
double integral = 0;
double i = intPointOne;
do
{
integral += Function(x[i])*.001;
i = i + .001;
}
while (i <= intPointTwo);
return integral;
}
这是一个函数,我必须简单地使用部分的总和来集成x1-x2中的函数。如何使这个循环更有效(使用更少的循环),但更准确?
Function
改变每次迭代,但它应该是无关紧要的,因为它的数量级(或边界)应保持相对相同...
答案 0 :(得分:6)
1)查看http://apps.nrbook.com/c/index.html的第4.3节,了解不同的算法。
2)要控制精度/速度因子,您可能需要指定边界x_low
和x_high
以及积分中需要的切片数量。所以你的功能看起来像这样
// Integrate function f(x) using the trapezoidal rule between x=x_low..x_high
double Integrate(Func<double,double> f, double x_low, double x_high, int N_steps)
{
double h = (x_high-x_low)/N_steps;
double res = (f(x_low)+f(x_high))/2;
for(int i=1; i < N; i++)
{
res += f(x_low+i*h);
}
return h*res;
}
一旦理解了这种基本集成,就可以继续使用数字Recipies和其他资源中提到的更精细的方案。
要使用此代码,请发出A = Integrate( Math.Sin, 0, Math.PI, 1440 );
答案 1 :(得分:1)
这里通过方法计算积分:左手,梯形和中点
/// <summary>
/// Return the integral from a to b of function f
/// using the left hand rule
/// </summary>
public static double IntegrateLeftHand(double a,
double b,
Func<double,double> f,
int strips = -1) {
if (a >= b) return -1; // constraint: a must be greater than b
// if strips is not provided, calculate it
if (strips == -1) { strips = GetStrips(a, b, f); }
double h = (b - a) / strips;
double acc = 0.0;
for (int i = 0; i < strips; i++) { acc += h * f(a + i * h); }
return acc;
}
/// <summary>
/// Return the integral from a to b of function f
/// using the midpoint rule
/// </summary>
public static double IntegrateMidPoint(double a,
double b,
Func<double, double> f,
int strips = -1) {
if (a >= b) return -1; // constraint: a must be greater than b
// if strips is not provided, calculate it
if (strips == -1) { strips = GetStrips(a, b, f); }
double h = (b - a) / strips;
double x = a + h / 2;
double acc = 0.0;
while (x < b)
{
acc += h * f(x);
x += h;
}
return acc;
}
/// <summary>
/// Return the integral from a to b of function f
/// using trapezoidal rule
/// </summary>
public static double IntegrateTrapezoidal(double a,
double b,
Func<double, double> f,
int strips = -1) {
if (a >= b) return -1; // constraint: a must be greater than b
// if strips is not provided, calculate it
if (strips == -1) { strips = GetStrips(a, b, f); }
double h = (b - a) / strips;
double acc = (h / 2) * (f(a) + f(b));
for (int i = 1; i < strips; i++) { acc += h * f(a + i * h); }
return acc;
}
private static int GetStrips(double a,
double b,
Func<double, double> f) {
int strips = 100;
for (int i = (int)a; i < b; i++)
{
strips = (strips > f(i)) ? strips : (int)f(i);
}
return strips;
}
Console.WriteLine("w/ strips:{0}", IntegrateLeftHand(0, 3.14, Math.Sin, 1440));
Console.WriteLine("without strips:{0}", IntegrateMidPoint(0, 30, x => x * x));
// or with a defined method for f(x)
public static double myFunc(x) { return x * (x + 1); }
Console.WriteLine("w/ strips:{0}", IntegrateLeftHand(0, 20, myFunc, 200));
答案 2 :(得分:0)
如果您事先了解功能,则可以分析它们,并查看哪些集成步骤大小适用于您的目的。即对于线性函数,您只需要一步,但对于其他函数,您可能需要可变步骤。至少看看你是否可以逃脱(pointTwo - pointOne)/1000.0
。
如果您需要通用功能并且它不是家庭作业,您应该强烈考虑现有的图书馆或在第一年的数学课程中刷新......
请注意,您的代码实际上存在不使用i的错误(这是x的名称非常糟糕):
for(x=intPointOne; x<=intPointTwo;x+=0.001)
{
integral += Function(x)*.001;
}
答案 3 :(得分:0)
您正在使用左手规则进行整合。只要函数在域中具有正斜率和负斜率(由于使用左端点的错误抵消),这仅是半精确的。
我建议,至少,移动到梯形规则(计算由集合形成的梯形下面积(x [i],0),(x [i + 0.001],0),(x [i ],函数(x [i]),(x [i + 0.001],函数(x [x + 0.001])。
更好的解决方案是使用辛普森的规则。这是一种较慢的算法,但准确性应该可以让你显着增加你的间隔。
请点击此处:Numerical Integration了解详情。