如何确定C中整数的位数?

时间:2009-07-01 12:21:22

标签: c math

例如,

n = 3432, result 4

n = 45, result 2

n = 33215, result 5

n = -357, result 3

我想我可以把它变成一个字符串,然后得到字符串的长度,但这看起来很复杂,而且很糟糕。

22 个答案:

答案 0 :(得分:134)

递归方法: - )

int numPlaces (int n) {
    if (n < 0) return numPlaces ((n == INT_MIN) ? MAX_INT: -n);
    if (n < 10) return 1;
    return 1 + numPlaces (n / 10);
}

或迭代:

int numPlaces (int n) {
    int r = 1;
    if (n < 0) n = (n == INT_MIN) ? INT_MAX: -n;
    while (n > 9) {
        n /= 10;
        r++;
    }
    return r;
}

或原始速度:

int numPlaces (int n) {
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n < 10) return 1;
    if (n < 100) return 2;
    if (n < 1000) return 3;
    if (n < 10000) return 4;
    if (n < 100000) return 5;
    if (n < 1000000) return 6;
    if (n < 10000000) return 7;
    if (n < 100000000) return 8;
    if (n < 1000000000) return 9;
    /*      2147483647 is 2^31-1 - add more ifs as needed
       and adjust this final return as well. */
    return 10;
}

上述内容已经过修改,可以更好地处理MININT。在任何不遵循明智的2 n 二进制补码规则的奇怪系统上,它们可能需要进一步调整。

原始速度版本实际上优于浮点版本,修改如下:

int numPlaces (int n) {
    if (n == 0) return 1;
    return floor (log10 (abs (n))) + 1;
}

通过一亿次迭代,我得到以下结果:

Raw speed with 0:            0 seconds
Raw speed with 2^31-1:       1 second
Iterative with 2^31-1:       5 seconds
Recursive with 2^31-1:       6 seconds
Floating point with 1:       6 seconds
Floating point with 2^31-1:  7 seconds

这实际上让我感到惊讶 - 我认为英特尔芯片有一个不错的FPU,但我猜一般的FP操作仍然无法与手动优化的整数代码竞争。

根据stormsoul的建议更新:

通过stormsoul测试乘法迭代解决方案得到4秒的结果,虽然它比除法迭代解决方案快得多,但它仍然与优化的if语句解决方案不匹配。

从1000个随机生成的数字池中选择参数会将原始速度时间推迟到2秒,因此看起来每次使用相同的参数可能有一些优势,它仍然是列出的最快方法。 / p>

使用-O2进行编译可以提高速度,但不提高相对位置(我将迭代次数增加了十倍来检查)。

任何进一步的分析都必须认真研究CPU效率的内部工作原理(不同类型的优化,缓存的使用,分支预测,实际拥有的CPU,房间内的环境温度等)会妨碍我付出的工作:-)。这是一个有趣的转移,但在某些时候,优化投资的回报变得太小而无关紧要。我认为我们有足够的解决方案来回答这个问题(毕竟,这不是速度问题)。

进一步更新:

这将是我对此答案的最终更新,除非明显不依赖于体系结构的错误。受到stormsoul勇敢测量的启发,我发布了我的测试程序(根据stormsoul自己的测试程序修改)以及这里答案中显示的所有方法的一些示例数据。请记住,这是在一台特定的机器上,您的里程可能会因您运行它的位置而有所不同(这就是我发布测试代码的原因)。

随心所欲:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#define numof(a) (sizeof(a) / sizeof(a[0]))

/* Random numbers and accuracy checks. */

static int rndnum[10000];
static int rt[numof(rndnum)];

/* All digit counting functions here. */

static int count_recur (int n) {
    if (n < 0) return count_recur ((n == INT_MIN) ? INT_MAX : -n);
    if (n < 10) return 1;
    return 1 + count_recur (n / 10);
}

static int count_diviter (int n) {
    int r = 1;
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    while (n > 9) {
        n /= 10;
        r++;
    }
    return r;
}

static int count_multiter (int n) {
    unsigned int num = abs(n);
    unsigned int x, i;
    for (x=10, i=1; ; x*=10, i++) {
        if (num < x)
            return i;
        if (x > INT_MAX/10)
            return i+1;
    }
}

static int count_ifs (int n) {
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n < 10) return 1;
    if (n < 100) return 2;
    if (n < 1000) return 3;
    if (n < 10000) return 4;
    if (n < 100000) return 5;
    if (n < 1000000) return 6;
    if (n < 10000000) return 7;
    if (n < 100000000) return 8;
    if (n < 1000000000) return 9;
    /*      2147483647 is 2^31-1 - add more ifs as needed
    and adjust this final return as well. */
    return 10;
}

static int count_revifs (int n) {
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n > 999999999) return 10;
    if (n > 99999999) return 9;
    if (n > 9999999) return 8;
    if (n > 999999) return 7;
    if (n > 99999) return 6;
    if (n > 9999) return 5;
    if (n > 999) return 4;
    if (n > 99) return 3;
    if (n > 9) return 2;
    return 1;
}

static int count_log10 (int n) {
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n == 0) return 1;
    return floor (log10 (n)) + 1;
}

static int count_bchop (int n) {
    int r = 1;
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n >= 100000000) {
        r += 8;
        n /= 100000000;
    }
    if (n >= 10000) {
        r += 4;
        n /= 10000;
    }
    if (n >= 100) {
        r += 2;
        n /= 100;
    }
    if (n >= 10)
        r++;

    return r;
}

/* Structure to control calling of functions. */

typedef struct {
    int (*fnptr)(int);
    char *desc;
} tFn;

static tFn fn[] = {
    NULL,                              NULL,
    count_recur,    "            recursive",
    count_diviter,  "     divide-iterative",
    count_multiter, "   multiply-iterative",
    count_ifs,      "        if-statements",
    count_revifs,   "reverse-if-statements",
    count_log10,    "               log-10",
    count_bchop,    "          binary chop",
};
static clock_t clk[numof (fn)];

int main (int c, char *v[]) {
    int i, j, k, r;
    int s = 1;

    /* Test code:
        printf ("%11d %d\n", INT_MIN, count_recur(INT_MIN));
        for (i = -1000000000; i != 0; i /= 10)
            printf ("%11d %d\n", i, count_recur(i));
        printf ("%11d %d\n", 0, count_recur(0));
        for (i = 1; i != 1000000000; i *= 10)
            printf ("%11d %d\n", i, count_recur(i));
        printf ("%11d %d\n", 1000000000, count_recur(1000000000));
        printf ("%11d %d\n", INT_MAX, count_recur(INT_MAX));
    /* */

    /* Randomize and create random pool of numbers. */

    srand (time (NULL));
    for (j = 0; j < numof (rndnum); j++) {
        rndnum[j] = s * rand();
        s = -s;
    }
    rndnum[0] = INT_MAX;
    rndnum[1] = INT_MIN;

    /* For testing. */
    for (k = 0; k < numof (rndnum); k++) {
        rt[k] = (fn[1].fnptr)(rndnum[k]);
    }

    /* Test each of the functions in turn. */

    clk[0] = clock();
    for (i = 1; i < numof (fn); i++) {
        for (j = 0; j < 10000; j++) {
            for (k = 0; k < numof (rndnum); k++) {
                r = (fn[i].fnptr)(rndnum[k]);
                /* Test code:
                    if (r != rt[k]) {
                        printf ("Mismatch error [%s] %d %d %d %d\n",
                            fn[i].desc, k, rndnum[k], rt[k], r);
                        return 1;
                    }
                /* */
            }
        }
        clk[i] = clock();
    }

    /* Print out results. */

    for (i = 1; i < numof (fn); i++) {
        printf ("Time for %s: %10d\n", fn[i].desc, (int)(clk[i] - clk[i-1]));
    }

    return 0;
}
  

请记住,您需要确保使用正确的命令行进行编译。特别是,可能需要明确列出数学库以使log10()正常工作。我在Debian下使用的命令行是gcc -o testprog testprog.c -lm

而且,就结果而言,这是我环境的领导者

优化等级0:

Time for reverse-if-statements:       1704
Time for         if-statements:       2296
Time for           binary chop:       2515
Time for    multiply-iterative:       5141
Time for      divide-iterative:       7375
Time for             recursive:      10469
Time for                log-10:      26953

优化等级3:

Time for         if-statements:       1047
Time for           binary chop:       1156
Time for reverse-if-statements:       1500
Time for    multiply-iterative:       2937
Time for      divide-iterative:       5391
Time for             recursive:       8875
Time for                log-10:      25438

答案 1 :(得分:96)

floor (log10 (abs (x))) + 1

http://en.wikipedia.org/wiki/Logarithm

答案 2 :(得分:26)

二进制搜索伪算法,以获取v中的r的数字。

if (v < 0 ) v=-v;

r=1;

if (v >= 100000000)
{
  r+=8;
  v/=100000000;
}

if (v >= 10000) {
    r+=4;
    v/=10000;
}

if (v >= 100) {
    r+=2;
    v/=100;
}

if( v>=10)
{
    r+=1;
}

return r;

答案 3 :(得分:26)

答案最短:snprintf(0,0,"%+d",n)-1

答案 4 :(得分:10)

这是一种计算小数位数by Kendall Willets的非常快速的方法:

int count_digits(uint32_t n) {
#ifndef __has_builtin
#  define __has_builtin(x) 0
#endif
#if __has_builtin(__builtin_clz)
  // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
  #  define K(T) (((sizeof(#T) - 1ull) << 32) - T)
  static const uint64_t table[] = {
      K(0),          K(0),          K(0),           // 8
      K(10),         K(10),         K(10),          // 64
      K(100),        K(100),        K(100),         // 512
      K(1000),       K(1000),       K(1000),        // 4096
      K(10000),      K(10000),      K(10000),       // 32k
      K(100000),     K(100000),     K(100000),      // 256k
      K(1000000),    K(1000000),    K(1000000),     // 2048k
      K(10000000),   K(10000000),   K(10000000),    // 16M
      K(100000000),  K(100000000),  K(100000000),   // 128M
      K(1000000000), K(1000000000), K(1000000000),  // 1024M
      K(1000000000), K(1000000000)                  // 4B
  };
  return (n + table[__builtin_clz(n | 1) ^ 31]) >> 32u;
#else
  int count = 1;
  for (;;) {
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
  return count;
#endif
}

快速路径依赖于 __builtin_clz,它在 GCC 和 clang 中可用,但由于运行良好的后备,count_digits 是完全可移植的。

这会生成非常高效的代码 (godbolt):

count_digits(unsigned int):
  mov edx, edi
  mov eax, edi
  or edx, 1
  bsr edx, edx
  movsx rdx, edx
  add rax, QWORD PTR count_digits(unsigned int)::table[0+rdx*8]
  shr rax, 32
  ret

答案 5 :(得分:8)

在循环中除以10,直到结果为零。迭代次数将对应于小数位数。

假设您期望在零值中获得0位数:

int countDigits( int value )
{
    int result = 0;
    while( value != 0 ) {
       value /= 10;
       result++;
    }
    return result;
}

答案 6 :(得分:6)

你可以这样做: floor (log10 (abs (x))) + 1 或者如果你想节省周期,你可以进行比较

if(x<10)
  return 1;
if(x<100)
  return 2;
if(x<1000)
  return 3;
etc etc

这避免了任何计算上昂贵的功能,例如日志甚至乘法或除法。虽然它不够优雅,但可以通过将其封装到一个函数中来隐藏它。它不复杂或难以维护,因此我不会因编码不良而忽略这种方法;我觉得这样做会把洗澡水扔掉。

答案 7 :(得分:6)

使用x86程序集和查找表的恒定成本版本:

int count_bsr(int i) {
    struct {
            int max;
            int count;
    } static digits[32] = {
            { 9, 1 }, { 9, 1 }, { 9, 1 }, { 9, 1 },
            { 99, 2 }, { 99, 2 }, { 99, 2 },
            { 999, 3 }, { 999, 3 }, { 999, 3 },
            { 9999, 4 }, { 9999, 4 }, { 9999, 4 }, { 9999, 4 },
            { 99999, 5 }, { 99999, 5 }, { 99999, 5 },
            { 999999, 6 }, { 999999, 6 }, { 999999, 6 },
            { 9999999, 7 }, { 9999999, 7 }, { 9999999, 7 }, { 9999999, 7 },
            { 99999999, 8 }, { 99999999, 8 }, { 99999999, 8 },
            { 999999999, 9 }, { 999999999, 9 }, { 999999999, 9 },
            { INT_MAX, 10 }, { INT_MAX, 10 }
    };
        register const int z = 0;
        register unsigned log2;
        if (i < 0) i = -i;
        __asm__ __volatile__ (
                "bsr %1, %0;"  \
                "cmovz %2, %0;"\
                : "=r" (log2)  \
                : "rm" (i), "r"(z));
        return digits[log2].count + ( i > digits[log2].max );
}

另一个,具有较小的查找表和从here获取的log10近似值。

int count_bsr2( int i ) {
    static const unsigned limits[] =
            {0, 10, 100, 1000, 10000, 100000,
             1000000, 10000000, 100000000, 1000000000};
        register const int z = 0;
        register int l, log2;
        if (i < 0) i = -i;
        __asm__ __volatile__ (
                "bsr %1, %0;"  \
                "cmovz %2, %0;"\
                : "=r" (log2)  \
                : "rm" (i), "r"(z));
       l = (log2 + 1) * 1233 >> 12;
       return (l + ((unsigned)i >= limits[l]));
}

这两个都利用了x86 -INT_MIN等于INT_MIN的事实。

<强>更新

根据建议,这里有 count_bsr 的时间和一个稍微快一点的64位 count_bsr_mod 例程与二进制搜索和二进制斩波算法相比,使用非常好的paxdiablo&修改了测试程序以生成具有随机符号分布的集合。测试使用gcc 4.9.2使用&#34; -O3 -falign-functions = 16 -falign-jumps = 16 -march = corei7-avx&#34;选项并在其他静止的Sandy Bridge系统上执行,并且具有涡轮和睡眠状态。

Time for               bsr mod:     270000  
Time for                   bsr:     340000  
Time for           binary chop:     800000  
Time for         binary search:     770000  
Time for     binary search mod:     470000  

测试来源,

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#define numof(a) (sizeof(a) / sizeof(a[0]))

/* Random numbers and accuracy checks. */

static int rndnum[10000];
static int rt[numof(rndnum)];

/* All digit counting functions here. */

static int count_bchop (int n) {
    int r = 1;
    if (n < 0) n = (n == INT_MIN) ? INT_MAX : -n;
    if (n >= 100000000) {
        r += 8;
        n /= 100000000;
    }
    if (n >= 10000) {
        r += 4;
        n /= 10000;
    }
    if (n >= 100) {
        r += 2;
        n /= 100;
    }
    if (n >= 10)
        r++;

    return r;
}

static int count_bsearch(int i)
{
    if (i < 0)
    {
        if (i == INT_MIN)
            return 11; // special case for -2^31 because 2^31 can't fit in a two's complement 32-bit integer
        i = -i;
    }
    if              (i < 100000) {
        if          (i < 1000) {
            if      (i < 10)         return 1;
            else if (i < 100)        return 2;
            else                     return 3;
        } else {
            if      (i < 10000)      return 4;
            else                     return 5;
        }
    } else {
        if          (i < 10000000) {
            if      (i < 1000000)    return 6;
            else                     return 7;
        } else {
            if      (i < 100000000)  return 8;
            else if (i < 1000000000) return 9;
            else                     return 10;
        }
    }
}

// Integer log base 10, modified binary search.
static int count_bsearch_mod(int i) {
   unsigned x = (i >= 0) ? i : -i;
   if (x > 99)
      if (x > 999999)
         if (x > 99999999)
            return 9 + (x > 999999999);
         else
            return 7 + (x > 9999999);
      else
         if (x > 9999)
            return 5 + (x > 99999);
         else
            return 3 + (x > 999);
   else
         return 1 + (x > 9);
}

static int count_bsr_mod(int i) {
    struct {
            int m_count;
            int m_threshold;
    } static digits[32] =
    {
      { 1, 9 }, { 1, 9 }, { 1, 9 }, { 1, 9 },
      { 2, 99 }, { 2, 99 }, { 2, 99 },
      { 3, 999 }, { 3, 999 }, { 3, 999 },
      { 4, 9999 }, { 4, 9999 }, { 4, 9999 }, { 4, 9999 },
      { 5, 99999 }, { 5, 99999 }, { 5, 99999 },
      { 6, 999999 }, { 6, 999999 }, { 6, 999999 },
      { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 },
      { 8, 99999999 }, { 8, 99999999 }, { 8, 99999999 },
      { 9, 999999999 }, { 9, 999999999 }, { 9, 999999999 },
      { 10, INT_MAX }, { 10, INT_MAX }
    };
        __asm__ __volatile__ (
            "cdq                    \n\t"
            "xorl %%edx, %0         \n\t"
            "subl %%edx, %0         \n\t"
            "movl %0, %%edx         \n\t"
            "bsrl %0, %0            \n\t"
            "shlq $32, %%rdx        \n\t"
            "movq %P1(,%q0,8), %q0  \n\t"
            "cmpq %q0, %%rdx        \n\t"
            "setg %%dl              \n\t"
            "addl %%edx, %0         \n\t"
                : "+a"(i)
                : "i"(digits)
                : "rdx", "cc"
        );
    return i;
}

static int count_bsr(int i) {
    struct {
            int max;
            int count;
    } static digits[32] = {
            { 9, 1 }, { 9, 1 }, { 9, 1 }, { 9, 1 },
            { 99, 2 }, { 99, 2 }, { 99, 2 },
            { 999, 3 }, { 999, 3 }, { 999, 3 },
            { 9999, 4 }, { 9999, 4 }, { 9999, 4 }, { 9999, 4 },
            { 99999, 5 }, { 99999, 5 }, { 99999, 5 },
            { 999999, 6 }, { 999999, 6 }, { 999999, 6 },
            { 9999999, 7 }, { 9999999, 7 }, { 9999999, 7 }, { 9999999, 7 },
            { 99999999, 8 }, { 99999999, 8 }, { 99999999, 8 },
            { 999999999, 9 }, { 999999999, 9 }, { 999999999, 9 },
            { INT_MAX, 10 }, { INT_MAX, 10 }
    };
        register const int z = 0;
        register unsigned log2;
        if (i < 0) i = -i;
        __asm__ __volatile__ (
                "bsr %1, %0;"  \
                "cmovz %2, %0;"\
                : "=r" (log2)  \
                : "rm" (i), "r"(z));
        return digits[log2].count + ( i > digits[log2].max );
}

/* Structure to control calling of functions. */

typedef struct {
    int (*fnptr)(int);
    const char *desc;
} tFn;

static tFn fn[] = {
 {   NULL,                              NULL },
 {   count_bsr_mod,  "              bsr mod" },
 {   count_bsr,      "                  bsr" },
 {   count_bchop,    "          binary chop" },
 {   count_bsearch,  "        binary search" },
 {   count_bsearch_mod,"    binary search mod"}
};
static clock_t clk[numof (fn)];

int main (int c, char *v[]) {
    int i, j, k, r;
    int s = 1;

    /* Test code:
        printf ("%11d %d\n", INT_MIN, count_bsearch(INT_MIN));
        //for (i = -1000000000; i != 0; i /= 10)
        for (i = -999999999; i != 0; i /= 10)
            printf ("%11d %d\n", i, count_bsearch(i));
        printf ("%11d %d\n", 0, count_bsearch(0));
        for (i = 1; i != 1000000000; i *= 10)
            printf ("%11d %d\n", i, count_bsearch(i));
        printf ("%11d %d\n", 1000000000, count_bsearch(1000000000));
        printf ("%11d %d\n", INT_MAX, count_bsearch(INT_MAX));
    return 0;
    /* */

    /* Randomize and create random pool of numbers. */

    int p, n;
    p = n = 0;
    srand (time (NULL));
    for (j = 0; j < numof (rndnum); j++) {
        rndnum[j] = ((rand() & 2) - 1) * rand();
    }
    rndnum[0] = INT_MAX;
    rndnum[1] = INT_MIN;

    /* For testing. */
    for (k = 0; k < numof (rndnum); k++) {
        rt[k] = (fn[1].fnptr)(rndnum[k]);
    }

    /* Test each of the functions in turn. */

    clk[0] = clock();
    for (i = 1; i < numof (fn); i++) {
        for (j = 0; j < 10000; j++) {
            for (k = 0; k < numof (rndnum); k++) {
                r = (fn[i].fnptr)(rndnum[k]);
                /* Test code:
                    if (r != rt[k]) {
                        printf ("Mismatch error [%s] %d %d %d %d\n",
                            fn[i].desc, k, rndnum[k], rt[k], r);
                        return 1;
                    }
                /* */
            }
        }
        clk[i] = clock();
    }

    /* Print out results. */

    for (i = 1; i < numof (fn); i++) {
        printf ("Time for %s: %10d\n", fn[i].desc, (int)(clk[i] - clk[i-1]));
    }

    return 0;
}

答案 8 :(得分:5)

来自Bit Twiddling Hacks:

Find integer log base 10 of an integer the obvious way

请注意比较的顺序。

答案 9 :(得分:4)

这是一个没有任何除法或乘法的展开二进制搜索。根据给定数字的分布,它可能会或可能不会打败使用展开的if语句完成的其他数字,但应该总是击败使用循环和乘法/除法/ log10的那些。

随着包含整个范围的随机数的均匀分布,在我的机器上,它平均为paxdiablo的count_bchop()的执行时间的79%,count_ifs()的时间的88%和count_revifs的97%的时间( )。

具有指数分布(具有 n 数字的数字的概率等于具有 m 数字的数字的概率,其中 m n )count_ifs()和count_revifs()都击败了我的函数。我不知道为什么在这一点上。

int count_bsearch(int i)
{
    if (i < 0)
    {
        if (i == INT_MIN)
            return 10; // special case for -2^31 because 2^31 can't fit in a two's complement 32-bit integer
        i = -i;
    }
    if              (i < 100000) {
        if          (i < 1000) {
            if      (i < 10)         return 1;
            else if (i < 100)        return 2;
            else                     return 3;
        } else {
            if      (i < 10000)      return 4;
            else                     return 5;
        }
    } else {
        if          (i < 10000000) {
            if      (i < 1000000)    return 6;
            else                     return 7;
        } else {
            if      (i < 100000000)  return 8;
            else if (i < 1000000000) return 9;
            else                     return 10;
        }
    }
}

答案 10 :(得分:4)

我在谷歌搜索过程中偶然发现了这一点:http://www.hackersdelight.org/hdcodetxt/ilog.c.txt

快速基准清楚地表明二进制搜索方法获胜。 lakshmanaraj's代码相当不错,Alexander Korobka's快了约30%,Deadcode's还要快一点(~10%),但我发现以上链接中的以下技巧给出了进一步提高10%。

// Integer log base 10, modified binary search.
int ilog10c(unsigned x) {
   if (x > 99)
      if (x < 1000000)
         if (x < 10000)
            return 3 + ((int)(x - 1000) >> 31);
         // return 3 - ((x - 1000) >> 31);              // Alternative.
         // return 2 + ((999 - x) >> 31);               // Alternative.
         // return 2 + ((x + 2147482648) >> 31);        // Alternative.
         else
            return 5 + ((int)(x - 100000) >> 31);
      else
         if (x < 100000000)
            return 7 + ((int)(x - 10000000) >> 31);
         else
            return 9 + ((int)((x-1000000000)&~x) >> 31);
         // return 8 + (((x + 1147483648) | x) >> 31);  // Alternative.
   else
      if (x > 9)
            return 1;
      else
            return ((int)(x - 1) >> 31);
         // return ((int)(x - 1) >> 31) | ((unsigned)(9 - x) >> 31);  // Alt.
         // return (x > 9) + (x > 0) - 1;                             // Alt.
}

请注意,这是log 10,而不是位数,因此digits = ilog10c(x)+1

不支持否定,但可以使用-轻松修复。

答案 11 :(得分:2)

if (x == MININT) return 10;  //  abs(MININT) is not defined
x = abs (x);
if (x<10) return 1;
if (x<100) return 2;
if (x<1000) return 3;
if (x<10000) return 4;
if (x<100000) return 5;
if (x<1000000) return 6;
if (x<10000000) return 7;
if (x<100000000) return 8;
if (x<1000000000) return 9;
return 10; //max len for 32-bit integers

非常不优雅。但比所有其他解决方案更快。整数除法和FP日志的成本很高。如果性能不是问题,log10解决方案是我的最爱。

答案 12 :(得分:2)

对C语言稍作调整:

floor( log10( abs( (number)?number:1 ) ) + 1 );

答案 13 :(得分:2)

    int n = 437788;
    int N = 1; 
    while (n /= 10) N++; 

答案 14 :(得分:1)

我知道我迟到了,但这段代码比所有其他答案都快+ x10

int digits(long long x)
{
    x < 0 ? x = -x : 0;
    return x < 10 ? 1 :
        x < 100 ? 2 :
        x < 1000 ? 3 :
        x < 10000 ? 4 :
        x < 100000 ? 5 :
        x < 1000000 ? 6 :
        x < 10000000 ? 7 :
        x < 100000000 ? 8 :
        x < 1000000000 ? 9 :
        x < 10000000000 ? 10 : 0;
}

<强> ...

int x = -937810;
printf("%d : %d digits\n", x, digits(x));

<强>输出:

-937810 : 6 digits

答案 15 :(得分:1)

既然没有人提到,少于 10^ 的可以用 SIMD 来完成。 这是一个用于 sse2、avx2 和 arm-v8 的 eve 库的实现。

https://godbolt.org/z/bscr3MWr4

我不知道这有多快,虽然 AVX-2 看起来很不错

count_digits(int):                      # @count_digits(int)
        vmovd   xmm0, edi
        vpbroadcastd    ymm0, xmm0
        vmovdqa ymm1, ymmword ptr [rip + .LCPI0_0] # ymm1 = [10,100,1000,10000,100000,1000000,10000000,100000000]
        vpcmpgtd        ymm0, ymm1, ymm0
        vmovmskps       ecx, ymm0
        bsf     edx, ecx
        add     edx, 1
        xor     esi, esi
        cmp     edi, 1000000000
        setl    sil
        mov     eax, 10
        sub     eax, esi
        test    cl, cl
        cmovne  eax, edx
        vzeroupper
        ret

答案 16 :(得分:0)

您可以使用此公式查找数字中的位数 ceil(log10(abs(x)))其中ceil返回一个大于数字

的整数

答案 17 :(得分:0)

请勿使用楼层(log10(...))。这些是浮点函数,还有慢函数。我相信最快的方法就是这个功能:

int ilog10(int num)
{
   unsigned int num = abs(num);
   unsigned int x, i;
   for(x=10, i=1; ; x*=10, i++)
   {
      if(num < x)
         return i;
      if(x > INT_MAX/10)
         return i+1;
   }
}

请注意,由于分支错误预测,某些人建议的二进制搜索版本可能会变慢。

修改

我做了一些测试,得到了一些非常有趣的结果。我将我的函数与Pax测试的所有函数以及lakshmanaraj给出的二进制搜索函数一起计时。 测试由以下代码片段完成:

start = clock();
for(int i=0; i<10000; i++)
   for(int j=0; j<10000; j++)
      tested_func(numbers[j]);
end = clock();
tested_func_times[pass] = end-start;

其中numbers []数组在int类型的整个范围内包含随机生成的数字(禁止MIN_INT)。对THE SAME numbers []阵列上的每个测试函数重复测试。整个测试进行了10次,结果在所有通过中取平均值。代码是使用GCC 4.3.2编译的,具有-O3优化级别。

结果如下:

floating-point log10:     10340ms
recursive divide:         3391ms
iterative divide:         2289ms
iterative multiplication: 1071ms
unrolled tests:           859ms
binary search:            539ms

我必须说我真的很惊讶。二进制搜索的表现比我想象的要好得多。我查看了GCC如何将此代码编译为asm。 O_O。现在这令人印象深刻。它比我想象的更好地优化,以非常聪明的方式避开大多数分支。难怪它很快。

答案 18 :(得分:0)

我想,最简单的方法是:

 int digits = 0;
if (number < 0) digits = 1;
while (number) {
    number /= 10;
    digits++;
}

数字给出答案。

答案 19 :(得分:0)

查找有符号整数的长度(即位数)的简单方法是:

while ( abs(n) > 9 )
{
    num /= 10;
    ++len;
}

其中n是您要查找的整数的长度,其中len等于整数中的位数。这适用于n(负面或正面)的两个值。

如果您只使用正整数,则abs()上的调用是可选的。

答案 20 :(得分:0)

对于c#,这是一个非常快速且简单的解决方案...

    private static int NumberOfPlaces(int n)
    {
       //fast way to get number of digits
       //converts to signed string with +/- intact then accounts for it by subtracting 1
       return n.ToString("+#;-#;+0").Length-1;
    }

答案 21 :(得分:-1)

void main()
{     
    int a,i;
    printf("Enter the number :");       
    scanf("%d",&a);

    while(a>0)     
    {
        a=a/10;   
        i++;  
    }

    getch();
}