我非常抱歉标题,但用几句话描述我的问题有点难。我认为帖子的其余部分会更好地解释它! ;)
描述
我基本上有一个瓷砖/对象/符号的二维数组,每当一组瓷砖被特殊瓷砖分隔时,我想把它分成两个(或更多)新的二维数组。
例如,如果我有:
[X] [X] [0] [0]
[0] [0]的 [X] [0]
[0] [0]的 [X] [0]
[0] [0] [0]的 [X]
如果不需要符号x,则应该给我两个新数组:
[X] [X] [0] [0]
[X] [X] [X] [0]
[X] [X] [X] [0]
[X] [X] [X] [X]
和
[X] [X] [X] [X]
[0] [0]的 [X] [X]
[0] [0]的 [X] [X]
[0] [0] [0]的 [X]
每组互连图块有一个数组。
在我的特定情况下,我将空对象作为x,并将其余对象作为任意对象。基本上,如果我不能通过瓦片A到达瓦片B而不穿过零,那么这两个是两个不同的组。
我已经在脑海中玩了一段时间,而我能想到的最好的肯定比O(n ^ 2)差得多,因为他们甚至在第一时间工作。 Flood fill让人想起可以用来找到一个群体的东西,但除此之外,我不确定我是否可以在这个例子中提出任何其他类似的问题。
问题
所以我要问的是,你是否碰巧知道我的问题在哪个方向和/或如何解决它。计算复杂性并不是那么重要,因为我计划不经常执行此操作,也不会在大型数组上执行。不过,我希望我没有遇到NP难题! :3
谢谢!
答案 0 :(得分:6)
我希望我没有遇到NP难题!
这远非NP问题。
我将解释两种不同的方法来解决问题。一个将使用您预期的Flood Fill,另一个将使用Disjoint-set数据结构。
假设您有一个矩阵N x M
,其中未使用的位置(row, column)
为null
,否则包含值。
您需要遍历每一行1..M
每行1..N
。这很简单:
for row in range(1, N + 1):
for column in range(1, M + 1):
if matrix[row][column] is not null:
floodfill(matrix, row, column)
每次找到非null
值时,您都需要调用Flood Fill算法,我将在下面定义Flood Fill方法后,原因会更加清晰。
def floodfill(matrix, row, column):
# I will use a queue to keep record of the positions we are gonna traverse.
# Each element in the queue is a coordinate position (row,column) of an element
# of the matrix.
Q = Queue()
# A container for the up, down, left and right directions.
dirs = { (-1, 0), (1, 0), (0, -1), (0, 1) }
# Now we will add our initial position to the queue.
Q.push( (row, column) )
# And we will mark the element as null. You will definitely need to
# use a boolean matrix to mark visited elements. In this case I will simply
# mark them as null.
matrix[row][column] = null
# Go through each element in the queue, while there are still elements to visit.
while Q is not empty:
# Pop the next element to visit from the queue.
# Remember this is a (row, column) position.
(r, c) = Q.pop()
# Add the element to the output region.
region.add( (r, c) )
# Check for non-visited position adjacent to this (r,c) position.
# These are:
# (r + 1, c): down
# (r - 1, c): up
# (r, c - 1): left
# (r, c + 1): right
for (dr, dc) in dirs:
# Check if this adjacent position is not null and keep it between
# the matrix size.
if matrix[r + dr][c + dc] is not null
and r + dr <= rows(matrix)
and c + dc <= colums(matrix):
# Then add the position to the queue to be visited later
Q.push(r + dr, c + dc)
# And mark this position as visited.
matrix[r + dr][c + dc] = null
# When there are no more positions to visit. You can return the
# region visited.
return region
如果您跟踪识别的区域数,则可以修改此算法以在不同的数组中标记具有指定编号的每个区域。您会注意到我正在使用队列而不是递归函数,这将使您远离命中最大递归限制。
我认为更昂贵的另一个解决方案是使用Disjoint-set数据结构来实现相同的目的。我只会向floodfill
方法显示更改。
def floodfill(matrix):
disjoint_set = DisjointSet()
# Go through each row in the matrix
for row in range(1, N + 1):
# Go through each column in the matrix
for column in range(1, M + 1):
# Create a set for the current position
disjoint_set.makeSet(row, column)
if matrix[row - 1][column] is not null:
# If the position north of it it is not null then merge them
disjoint_set.merge((row, column), (row - 1, column))
if matrix[row][column - 1] is not null:
# If the position left of it it is not null then merge them
disjoint_set.merge((row, column), (row, column - 1))
# You can go through each position identifying its set and do something with it
for row in range(1, N + 1):
for column in range(1, M + 1):
regions[ disjoint_set.find(row, column) ] = (row, column)
return regions
我希望这有帮助。
由于你不关心它,我没有理会显示复杂性。
答案 1 :(得分:3)
您似乎需要connected-component labeling算法来生成分离的对象组