我正在寻找一种在c#中实现移动平均滤波器的优雅方法。现在,这很容易,但在边界处,平均窗口应环绕开始/结束。这种方式让我的代码变得丑陋和不直观,我想知道是否有一种更聪明的方法可以使用LINQ来解决这个问题。
所以我现在拥有的是:
// input is a List<double> y, output is List<double> yfiltered
int yLength = y.Count;
for (int i = 0; i < yLength; i++)
{
double sum = 0.0;
for (int k = i - halfWindowWidth; k <= i + halfWindowWidth; k++)
{
if (k < 0)
{
// k is negative, wrap around
sum += y[yLength - 1 + k];
}
else if (k >= yLength)
{
// k exceeds y length, wrap around
sum += y[k - yLength];
}
else
{
// k within y.Count
sum += y[k];
}
}
yfiltered[i] = sum / (2 * halfWindowWidth + 1);
}
答案 0 :(得分:4)
在我的comment上展开,您可以使用mod (%
)运算符让k
换行
从0
到ylength - 1
// input is a List<double> y, output is List<double> yfiltered
int yLength = y.Count;
for (int i = 0; i < yLength; i++)
{
double sum = 0.0;
for (int k = i - halfWindowWidth; k <= i + halfWindowWidth; k++)
{
sum += y[(k + yLength) % yLength];
}
yfiltered[i] = sum / (2 * halfWindowWidth + 1);
}
答案 1 :(得分:4)
这是一个完全不同的建议 -
我试图让它变得更好,而不是更具可读性。
您当前代码的问题在于,在不需要的情况下,它会一次又一次地总结许多数字。
比较实施代码后的两种方法......
我只是第一次总结一堆,然后一次又一次减去尾巴并添加头部:
double sum = 0;
// sum = Enumerable.Range(i - halfWindowWidth, halfWindowWidth * 2 + 1)
// .Select(k => y[(k + yLength) % yLength]).Sum();
for (var i = -halfWindowWidth; i <= halfWindowWidth; i++)
{
sum += y[(i + yLength) % yLength];
}
yFiltered[0] = sum / (2 * halfWindowWidth + 1);
for (var i = 1; i < yLength; i++)
{
sum = sum -
y[(i - halfWindowWidth - 1 + yLength) % yLength] +
y[(i + halfWindowWidth) % yLength];
yFiltered[i] = sum / (2 * halfWindowWidth + 1);
}
以下是速度测试,比较完全重新计算方法与此方法:
private static double[] Foo1(IList<double> y, int halfWindowWidth)
{
var yfiltered = new double[y.Count];
var yLength = y.Count;
for (var i = 0; i < yLength; i++)
{
var sum = 0.0;
for (var k = i - halfWindowWidth; k <= i + halfWindowWidth; k++)
{
sum += y[(k + yLength) % yLength];
}
yfiltered[i] = sum / (2 * halfWindowWidth + 1);
}
return yfiltered;
}
private static double[] Foo2(IList<double> y, int halfWindowWidth)
{
var yFiltered = new double[y.Count];
var windowSize = 2 * halfWindowWidth + 1;
double sum = 0;
for (var i = -halfWindowWidth; i <= halfWindowWidth; i++)
{
sum += y[(i + y.Count) % y.Count];
}
yFiltered[0] = sum / windowSize;
for (var i = 1; i < y.Count; i++)
{
sum = sum -
y[(i - halfWindowWidth - 1 + y.Count) % y.Count] +
y[(i + halfWindowWidth) % y.Count];
yFiltered[i] = sum / windowSize;
}
return yFiltered;
}
private static TimeSpan TestFunc(Func<IList<double>, int, double[]> func, IList<double> y, int halfWindowWidth, int iteration
{
var sw = Stopwatch.StartNew();
for (var i = 0; i < iterations; i++)
{
var yFiltered = func(y, halfWindowWidth);
}
sw.Stop();
return sw.Elapsed;
}
private static void RunTests()
{
var y = new List<double>();
var rand = new Random();
for (var i = 0; i < 1000; i++)
{
y.Add(rand.Next());
}
var foo1Res = Foo1(y, 100);
var foo2Res = Foo2(y, 100);
Debug.WriteLine("Results are equal: " + foo1Res.SequenceEqual(foo2Res));
Debug.WriteLine("Foo1: " + TestFunc(Foo1, y, 100, 1000));
Debug.WriteLine("Foo2: " + TestFunc(Foo2, y, 100, 1000));
}
时间复杂性:
MyWay:O(n + m)
其他方式:O(n * m)
由于Foo1为O(n * m)且Foo2为O(n + m),因此差异很大并不奇怪。
这个的结果并不是真正疯狂的大规模:
结果相同:正确
Foo1:5.52秒
Foo2:61.1毫秒
并且在更大的范围内(在迭代和计数上用10000替换为1000):
Foo1:10分钟后停止......
Foo2:6.9秒
答案 2 :(得分:3)
for (var i = 0; i < yLength; i++)
{
var sum = Enumerable.Range(i - halfWindowWidth, halfWindowWidth * 2 + 1)
.Select(k => y[(yLength + k) % yLength]).Sum();
yFiltered[i] = sum / (2 * halfWindowWidth + 1);
}
甚至:
var output = input.Select((val, i) =>
Enumerable.Range(i - halfWindowWidth, halfWindowWidth * 2 + 1)
.Select(k => input[(input.Count + k) % input.Count])
.Sum()).ToList();