阶乘函数 - 并行处理

时间:2012-05-06 09:40:05

标签: java parallel-processing

我需要在EREW PRAM系统上的并行计算中编写 factorial function (n!)。 假设我们有n个proccessors。 复杂性应该是log n。 我怎么能这样做?

2 个答案:

答案 0 :(得分:2)

  我们有n个proccessors。复杂性应该是log n。

这个问题毫无意义,因为你正在寻找一种算法,当你添加处理器时复杂度(log n增加(即增加n)。

我猜你要做的是将产品1*2*3*...*k拆分成相同大小的n块,在单独的处理器上计算每个子产品,然后乘以{{ 1}}结果一起。

答案 1 :(得分:2)

通常,您可以为N个处理器划分工作N次,并单独计算每个处理器。您可以通过将每个工作的答案相乘来组合结果。例如第一个任务执行m !,下一个(2米)!/ m !,第三个任务(3米!)/(2米!)等。当你得到多个结果时你得到n!。

BTW:你不会为n的小值(例如小于1000)执行此操作,因为启动新线程/任务的开销可能大于在单个线程中执行此操作所需的时间。< / p>


我怀疑伪代码是不够的所以这是一个例子

public enum CalcFactorial {;

    public static BigInteger factorial(long n) {
        BigInteger result = BigInteger.ONE;
        for (long i = 2; i <= n; i++)
            result = result.multiply(BigInteger.valueOf(i));
        return result;
    }

    public static BigInteger pfactorial(long n) {
        int processors = Runtime.getRuntime().availableProcessors();
        if (n < processors * 2)
            return factorial(n);
        long batchSize = (n + processors - 1) / processors;
        ExecutorService service = Executors.newFixedThreadPool(processors);
        try {
            List<Future<BigInteger>> results = new ArrayList<Future<BigInteger>>();
            for (long i = 1; i <= n; i += batchSize) {
                final long start = i;
                final long end = Math.min(n + 1, i + batchSize);
                results.add(service.submit(new Callable<BigInteger>() {
                    @Override
                    public BigInteger call() throws Exception {
                        BigInteger n = BigInteger.valueOf(start);
                        for (long j = start + 1; j < end; j++)
                            n = n.multiply(BigInteger.valueOf(j));
                        return n;
                    }
                }));
            }
            BigInteger result = BigInteger.ONE;
            for (Future<BigInteger> future : results) {
                result = result.multiply(future.get());
            }
            return result;
        } catch (Exception e) {
            throw new AssertionError(e);
        } finally {
            service.shutdown();
        }
    }
}

public class CalcFactorialTest {
    @Test
    public void testFactorial() {
        final int tests = 200;
        for (int i = 1; i <= tests; i++) {
            BigInteger f1 = factorial(i * i);
            BigInteger f2 = pfactorial(i * i);
            assertEquals(f1, f2);
        }
        long start = System.nanoTime();
        for (int i = 1; i <= tests; i++) {
            BigInteger f1 = factorial(i * i);
        }
        long mid = System.nanoTime();
        for (int i = 1; i <= tests; i++) {
            BigInteger f2 = pfactorial(i * i);
        }
        long end = System.nanoTime();
        System.out.printf("Single threaded took %.3f sec, multi-thread took %.3f%n",
                (mid - start) / 1e9, (end - mid) / 1e9);
    }
}

在3.72 GHz i7打印

Single threaded took 58.702 sec, multi-thread took 11.391