有一张包含访问数据的表格:
uid (INT) | created_at (DATETIME)
我想查找用户连续多少天访问过我们的应用。例如:
SELECT DISTINCT DATE(created_at) AS d FROM visits WHERE uid = 123
将返回:
d
------------
2012-04-28
2012-04-29
2012-04-30
2012-05-03
2012-05-04
有5条记录和两个间隔 - 3天(4月28日至30日)和2天(5月3日至4日)。
我的问题是如何找到用户连续访问该应用的最大天数(示例中为3天)。试图在SQL文档中找到合适的函数,但没有成功。我错过了什么吗?
UPD: 谢谢你们的答案!实际上,我正在使用vertica分析数据库(http://vertica.com/),但这是一个非常罕见的解决方案,只有少数人有使用它的经验。虽然它支持SQL-99标准。
嗯,大多数解决方案只需稍作修改即可。最后,我创建了自己的查询版本:
-- returns starts of the vitit series
SELECT t1.d as s FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', -1, t1.d))
WHERE t2.d is null GROUP BY t1.d
s
---------------------
2012-04-28 01:00:00
2012-05-03 01:00:00
-- returns end of the vitit series
SELECT t1.d as f FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', 1, t1.d))
WHERE t2.d is null GROUP BY t1.d
f
---------------------
2012-04-30 01:00:00
2012-05-04 01:00:00
所以现在我们只需要以某种方式加入它们,例如通过行索引。
SELECT s, f, DATEDIFF(day, s, f) + 1 as seq FROM (
SELECT t1.d as s, ROW_NUMBER() OVER () as o1 FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', -1, t1.d))
WHERE t2.d is null GROUP BY t1.d
) tbl1 LEFT JOIN (
SELECT t1.d as f, ROW_NUMBER() OVER () as o2 FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', 1, t1.d))
WHERE t2.d is null GROUP BY t1.d
) tbl2 ON o1 = o2
示例输出:
s | f | seq
---------------------+---------------------+-----
2012-04-28 01:00:00 | 2012-04-30 01:00:00 | 3
2012-05-03 01:00:00 | 2012-05-04 01:00:00 | 2
答案 0 :(得分:7)
另一种最短的方法是自我加入:
with grouped_result as
(
select
sr.d,
sum((fr.d is null)::int) over(order by sr.d) as group_number
from tbl sr
left join tbl fr on sr.d = fr.d + interval '1 day'
)
select d, group_number, count(d) over m as consecutive_days
from grouped_result
window m as (partition by group_number)
输出:
d | group_number | consecutive_days
---------------------+--------------+------------------
2012-04-28 08:00:00 | 1 | 3
2012-04-29 08:00:00 | 1 | 3
2012-04-30 08:00:00 | 1 | 3
2012-05-03 08:00:00 | 2 | 2
2012-05-04 08:00:00 | 2 | 2
(5 rows)
实时测试:http://www.sqlfiddle.com/#!1/93789/1
sr =第二行,fr =第一行(或者可能是前一行?ツ)。基本上我们正在进行反向跟踪,这是数据库的模拟延迟,不支持LAG
(Postgres支持LAG,但解决方案是very long,因为窗口不支持嵌套窗口)。所以在这个查询中,我们使用混合方法,通过join模拟LAG,然后对它使用SUM窗口,这会产生组号
<强>更新强>
忘了把最后的查询,上面的查询说明了组编号的基础,需要将其变形为:
with grouped_result as
(
select
sr.d,
sum((fr.d is null)::int) over(order by sr.d) as group_number
from tbl sr
left join tbl fr on sr.d = fr.d + interval '1 day'
)
select min(d) as starting_date, max(d) as end_date, count(d) as consecutive_days
from grouped_result
group by group_number
-- order by consecutive_days desc limit 1
STARTING_DATE END_DATE CONSECUTIVE_DAYS
April, 28 2012 08:00:00-0700 April, 30 2012 08:00:00-0700 3
May, 03 2012 08:00:00-0700 May, 04 2012 08:00:00-0700 2
<强>更新强>
我知道为什么使用窗口函数的other solution变长了,我试图说明组编号和计数组的逻辑变得很长。如果我像MySql approach那样切入追逐,那么窗口函数可能会更短。话虽如此,这是我的旧窗口功能方法,虽然现在更好:
with headers as
(
select
d,lag(d) over m is null or d - lag(d) over m <> interval '1 day' as header
from tbl
window m as (order by d)
)
,sequence_group as
(
select d, sum(header::int) over (order by d) as group_number
from headers
)
select min(d) as starting_date,max(d) as ending_date,count(d) as consecutive_days
from sequence_group
group by group_number
-- order by consecutive_days desc limit 1
答案 1 :(得分:2)
在MySQL中你可以这样做:
SET @nextDate = CURRENT_DATE;
SET @RowNum = 1;
SELECT MAX(RowNumber) AS ConecutiveVisits
FROM ( SELECT @RowNum := IF(@NextDate = Created_At, @RowNum + 1, 1) AS RowNumber,
Created_At,
@NextDate := DATE_ADD(Created_At, INTERVAL 1 DAY) AS NextDate
FROM Visits
ORDER BY Created_At
) Visits
此处示例:
http://sqlfiddle.com/#!2/6e035/8
然而,我并非100%确定这是最好的方法。
在Postgresql中:
;WITH RECURSIVE VisitsCTE AS
( SELECT Created_At, 1 AS ConsecutiveDays
FROM Visits
UNION ALL
SELECT v.Created_At, ConsecutiveDays + 1
FROM Visits v
INNER JOIN VisitsCTE cte
ON 1 + cte.Created_At = v.Created_At
)
SELECT MAX(ConsecutiveDays) AS ConsecutiveDays
FROM VisitsCTE
此处示例:
答案 2 :(得分:2)
我知道Postgresql有类似于MSSQL中可用的常用表表达式。我对Postgresql并不熟悉,但下面的代码适用于MSSQL,可以满足您的需求。
create table #tempdates (
mydate date
)
insert into #tempdates(mydate) values('2012-04-28')
insert into #tempdates(mydate) values('2012-04-29')
insert into #tempdates(mydate) values('2012-04-30')
insert into #tempdates(mydate) values('2012-05-03')
insert into #tempdates(mydate) values('2012-05-04');
with maxdays (s, e, c)
as
(
select mydate, mydate, 1
from #tempdates
union all
select m.s, mydate, m.c + 1
from #tempdates t
inner join maxdays m on DATEADD(day, -1, t.mydate)=m.e
)
select MIN(o.s),o.e,max(o.c)
from (
select m1.s,max(m1.e) e,max(m1.c) c
from maxdays m1
group by m1.s
) o
group by o.e
drop table #tempdates
这是SQL小提琴:http://sqlfiddle.com/#!3/42b38/2
答案 3 :(得分:2)
所有这些都是非常好的答案,但我认为我应该通过展示另一种利用Vertica特有的分析能力的方法做出贡献(毕竟它是你付出的一部分)。我保证最后的查询很简短。
首先,使用conditional_true_event()进行查询。来自Vertica的文档:
为每行指定一个事件窗口编号,从0开始,和 当布尔参数的结果时,将数字增加1 表达式评估为真。
示例查询如下所示:
select uid, created_at,
conditional_true_event( created_at - lag(created_at) > '1 day' )
over (partition by uid order by created_at) as seq_id
from visits;
输出:
uid created_at seq_id
--- ------------------- ------
123 2012-04-28 00:00:00 0
123 2012-04-29 00:00:00 0
123 2012-04-30 00:00:00 0
123 2012-05-03 00:00:00 1
123 2012-05-04 00:00:00 1
123 2012-06-04 00:00:00 2
123 2012-06-04 00:00:00 2
现在最后的查询变得简单了:
select uid, seq_id, count(1) num_days, min(created_at) s, max(created_at) f
from
(
select uid, created_at,
conditional_true_event( created_at - lag(created_at) > '1 day' )
over (partition by uid order by created_at) as seq_id
from visits
) as seq
group by uid, seq_id;
最终输出:
uid seq_id num_days s f
--- ------ -------- ------------------- -------------------
123 0 3 2012-04-28 00:00:00 2012-04-30 00:00:00
123 1 2 2012-05-03 00:00:00 2012-05-04 00:00:00
123 2 2 2012-06-04 00:00:00 2012-06-04 00:00:00
最后一点说明:
num_days
实际上是内部查询的行数。如果原始表格中有两次'2012-04-28'
次访问(即重复),您可能需要解决此问题。
答案 4 :(得分:1)
以下内容应该是Oracle友好的,不需要递归逻辑。
;WITH
visit_dates (
visit_id,
date_id,
group_id
)
AS
(
SELECT
ROW_NUMBER() OVER (ORDER BY TRUNC(created_at)),
TRUNC(SYSDATE) - TRUNC(created_at),
TRUNC(SYSDATE) - TRUNC(created_at) - ROW_NUMBER() OVER (ORDER BY TRUNC(created_at))
FROM
visits
GROUP BY
TRUNC(created_at)
)
,
group_duration (
group_id,
duration
)
AS
(
SELECT
group_id,
MAX(date_id) - MIN(date_id) + 1 AS duration
FROM
visit_dates
GROUP BY
group_id
)
SELECT
MAX(duration) AS max_duration
FROM
group_duration
答案 5 :(得分:1)
PostgreSQL的:
with headers as
(
select
d,
lag(d) over m is null or d - lag(d) over m <> interval '1 day' as header
from tbl
window m as (order by d)
)
,sequence_group as
(
select d, sum(header::int) over m as group_number
from headers
window m as (order by d)
)
,consecutive_list as
(
select d, group_number, count(d) over m as consecutive_count
from sequence_group
window m as (partition by group_number)
)
select * from consecutive_list
分治方法:3个步骤
第一步,找到标题:
with headers as
(
select
d,
lag(d) over m is null or d - lag(d) over m <> interval '1 day' as header
from tbl
window m as (order by d)
)
select * from headers
输出:
d | header
---------------------+--------
2012-04-28 08:00:00 | t
2012-04-29 08:00:00 | f
2012-04-30 08:00:00 | f
2012-05-03 08:00:00 | t
2012-05-04 08:00:00 | f
(5 rows)
第二步,指定分组:
with headers as
(
select
d,
lag(d) over m is null or d - lag(d) over m <> interval '1 day' as header
from tbl
window m as (order by d)
)
,sequence_group as
(
select d, sum(header::int) over m as group_number
from headers
window m as (order by d)
)
select * from sequence_group
输出:
d | group_number
---------------------+--------------
2012-04-28 08:00:00 | 1
2012-04-29 08:00:00 | 1
2012-04-30 08:00:00 | 1
2012-05-03 08:00:00 | 2
2012-05-04 08:00:00 | 2
(5 rows)
第3步,计算最大天数:
with headers as
(
select
d,
lag(d) over m is null or d - lag(d) over m <> interval '1 day' as header
from tbl
window m as (order by d)
)
,sequence_group as
(
select d, sum(header::int) over m as group_number
from headers
window m as (order by d)
)
,consecutive_list as
(
select d, group_number, count(d) over m as consecutive_count
from sequence_group
window m as (partition by group_number)
)
select * from consecutive_list
输出:
d | group_number | consecutive_count
---------------------+--------------+-----------------
2012-04-28 08:00:00 | 1 | 3
2012-04-29 08:00:00 | 1 | 3
2012-04-30 08:00:00 | 1 | 3
2012-05-03 08:00:00 | 2 | 2
2012-05-04 08:00:00 | 2 | 2
(5 rows)
答案 6 :(得分:1)
这是针对最短的MySQL,并使用最小变量(仅一个变量):
select
min(d) as starting_date, max(d) as ending_date,
count(d) as consecutive_days
from
(
select
sr.d,
IF(fr.d is null,@group_number := @group_number + 1,@group_number)
as group_number
from tbl sr
left join tbl fr on sr.d = adddate(fr.d,interval 1 day)
cross join (select @group_number := 0) as grp
) as x
group by group_number
输出:
STARTING_DATE ENDING_DATE CONSECUTIVE_DAYS
April, 28 2012 08:00:00-0700 April, 30 2012 08:00:00-0700 3
May, 03 2012 08:00:00-0700 May, 04 2012 08:00:00-0700 2
答案 7 :(得分:1)
对于 PostgreSQL 8.4或更高版本,使用窗口函数并且没有JOIN
,有一种简洁的方法。
我希望这是迄今为止发布的最快的解决方案:
WITH x AS (
SELECT created_at AS d
, lag(created_at) OVER (ORDER BY created_at) = (created_at - 1) AS nu
FROM visits
WHERE uid = 1
)
, y AS (
SELECT d, count(NULLIF(nu, TRUE)) OVER (ORDER BY d) AS seq
FROM x
)
SELECT count(*) AS max_days, min(d) AS seq_from, max(d) AS seq_to
FROM y
GROUP BY seq
ORDER BY 1 DESC
LIMIT 1;
返回:
max_days | seq_from | seq_to
---------+------------+-----------
3 | 2012-04-28 | 2012-04-30
假设created_at
是date
和unique
。
在CTE x中:我们的用户每天都会访问,检查他是否也在昨天。
要计算“昨天”,只需使用created_at - 1
第一行是特殊情况,并在此处生成NULL。
在CTE中:每天计算“到目前为止没有昨天的天数”(seq
)的运行计数。 NULL值不计算,因此count(NULLIF(nu, TRUE))
是最简洁和最短的方式,也涵盖了特殊情况。
最后,每个seq
的分组天数并计算天数。在此期间,我添加了序列的第一天和最后一天。
ORDER BY
序列的长度,并选择最长的序列。
答案 8 :(得分:1)
这个问题已有几个答案。但是SQL语句看起来都太复杂了。这可以通过基本SQL,枚举行的方法和一些日期算法来完成。
关键的观察结果是,如果你有一堆天并且有一个平行的整数序列,那么差异就是天数在序列中的一个恒定日期。
以下查询使用此观察来回答原始问题:
select uid, min(d) as startdate, count(*) as numdaysinseq
from
(
select uid, d, adddate(d, interval -offset day) as groupstart
from
(
select uid, d, row_number() over (partition by uid order by date) as offset
from
(
SELECT DISTINCT uid, DATE(created_at) AS d
FROM visits
) t
) t
) t
唉,mysql没有row_number()
功能。但是,有一个变量的解决方法(大多数其他数据库都有这个功能)。
答案 9 :(得分:1)
在看到OP的Vertica数据库查询方法后,我尝试同时运行两个连接:
这些Postgresql和Sql Server查询版本都适用于Vertica
Postgresql版本:
select
min(gr.d) as start_date,
max(gr.d) as end_date,
date_part('day', max(gr.d) - min(gr.d))+1 as consecutive_days
from
(
select
cr.d, (row_number() over() - 1) / 2 as pair_number
from tbl cr
left join tbl pr on pr.d = cr.d - interval '1 day'
left join tbl nr on nr.d = cr.d + interval '1 day'
where pr.d is null <> nr.d is null
) as gr
group by pair_number
order by start_date
关于pr.d is null <> nr.d is null
。这意味着,它是前一行为空或下一行为空,但它们永远不能都为空,所以这基本上删除了非连续日期,因为非连续日期的前一个&amp;下一行是空的(这基本上给了我们所有日期,只是页眉和页脚)。这也称为XOR operation
如果我们只剩下连续日期,我们现在可以通过row_number配对它们:
(row_number() over() - 1) / 2 as pair_number
row_number()
从1开始,我们需要用1减去它(我们也可以用1加1),然后我们将它除以2;这使得配对日期彼此相邻
实时测试:http://www.sqlfiddle.com/#!1/fc440/7
这是Sql Server版本:
select
min(gr.d) as start_date,
max(gr.d) as end_date,
datediff(day, min(gr.d),max(gr.d)) +1 as consecutive_days
from
(
select
cr.d, (row_number() over(order by cr.d) - 1) / 2 as pair_number
from tbl cr
left join tbl pr on pr.d = dateadd(day,-1,cr.d)
left join tbl nr on nr.d = dateadd(day,+1,cr.d)
where
case when pr.d is null then 1 else 0 end
<> case when nr.d is null then 1 else 0 end
) as gr
group by pair_number
order by start_date
与上述逻辑相同,除了日期函数的人为差异。并且sql Server在其ORDER BY
上需要OVER
子句,而Postgresql的OVER
可以留空。
Sql Server没有第一类布尔值,这就是我们无法直接比较布尔值的原因:
pr.d is null <> nr.d is null
我们必须在Sql Server中执行此操作:
case when pr.d is null then 1 else 0 end
<> case when nr.d is null then 1 else 0 end