我得到了一个包含消息的n部分作为字节数组的映射。在最后一篇文章进入地图后,必须连接消息。我找到了两个应该满足要求的解决方案。第一个是使用System.arraycopy:
public byte[] getMessageBytes() throws IOException {
byte[] bytes = new byte[0];
for (final Map.Entry<Short,byte[]> entry : myMap.entrySet()) {
byte[] entryBytes = entry.getValue();
byte[] temp = new byte[bytes.length + entryBytes.length];
System.arraycopy(bytes, 0, temp, 0, bytes.length);
System.arraycopy(entryBytes, 0, temp, bytes.length, entryBytes.length);
bytes = temp;
}
return bytes;
}
第二个是使用ByteArrayOutputStream:
public byte[] getMessageBytes() throws IOException {
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
for (final Map.Entry<Short,byte[]> entry : myMap.entrySet()) {
baos.write(entry.getValue());
}
baos.flush();
return baos.toByteArray();
}
从性能和内存使用角度看,哪种方法更好? 是否有另一种方法可以进行更好的连接?
答案 0 :(得分:9)
由于您可以通过累加片段的长度来找出消息的大小,我会:
arraycopy()
每个部分放入输出数组中的正确位置。这可能是内存效率高且速度快的。但是,只有剖析才能说出完整的故事。
答案 1 :(得分:4)
这应该比你的第一个版本(未经测试)表现得更好
public byte[] getMessageBytes() throws IOException {
long amount = 0L;
long offset = 0L;
// no reason to use entrySet() if you just use the values
for (byte[] arr : myMap.values()) {
amount += arr.length;
}
byte[] dest = new byte[amount];
for (byte[] arr : myMap.values()) {
System.arraycopy(arr, 0, dest, offset, arr.length);
offset += arr.length;
}
return dest;
}
(这个答案大致相当于aix的)
答案 2 :(得分:0)
正确的答案是测试和比较您的具体情况。
这是一个SortedMap,就像TreeMap一样,或者你实际上是在随机合并这些字节吗?
答案 3 :(得分:0)
为每次迭代创建新数组的第一个解决方案是O(n ^ 2),如果您有许多条目,这是一个问题。而且它相当复杂。
使用ByteArrayOutputStream更好有两个原因:它在O(n)中运行,而且非常简单。
最有可能的是:如果您首先计算总大小,然后使用System.arraycopy。但是,如果ByteArrayOutputStream 真的太慢,我只会这样做。
答案 4 :(得分:0)
首先计算大小并分配结果一次应该是返回字节数组的最快解决方案。
如果稍后使用生成的字节数组作为InputStream
,并且根据数组的组合大小,最快的方法可能是根本不连接。在这种情况下,您可以创建SequenceInputStream
包裹多个ByteArrayInputStreams
。未经测试的示例代码:
Collection<byte[]> values = map.values();
List<ByteArrayInputStream> streams = new ArrayList<ByteArrayInputStream>(values.size());
for (byte[] bytes : values) {
streams.add(new ByteArrayInputStream(bytes));
}
return new SequenceInputStream(Collections.enumeration(streams));
答案 5 :(得分:0)
这是本地代码。
/*
* public static void arraycopy(Object src, int srcPos, Object dest,
* int destPos, int length)
*
* The description of this function is long, and describes a multitude
* of checks and exceptions.
*/
static void Dalvik_java_lang_System_arraycopy(const u4* args, JValue* pResult)
{
ArrayObject* srcArray = (ArrayObject*) args[0];
int srcPos = args[1];
ArrayObject* dstArray = (ArrayObject*) args[2];
int dstPos = args[3];
int length = args[4];
/* Check for null pointers. */
if (srcArray == NULL) {
dvmThrowNullPointerException("src == null");
RETURN_VOID();
}
if (dstArray == NULL) {
dvmThrowNullPointerException("dst == null");
RETURN_VOID();
}
/* Make sure source and destination are arrays. */
if (!dvmIsArray(srcArray)) {
dvmThrowArrayStoreExceptionNotArray(((Object*)srcArray)->clazz, "source");
RETURN_VOID();
}
if (!dvmIsArray(dstArray)) {
dvmThrowArrayStoreExceptionNotArray(((Object*)dstArray)->clazz, "destination");
RETURN_VOID();
}
/* avoid int overflow */
if (srcPos < 0 || dstPos < 0 || length < 0 ||
srcPos > (int) srcArray->length - length ||
dstPos > (int) dstArray->length - length)
{
dvmThrowExceptionFmt(gDvm.exArrayIndexOutOfBoundsException,
"src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
srcArray->length, srcPos, dstArray->length, dstPos, length);
RETURN_VOID();
}
ClassObject* srcClass = srcArray->clazz;
ClassObject* dstClass = dstArray->clazz;
char srcType = srcClass->descriptor[1];
char dstType = dstClass->descriptor[1];
/*
* If one of the arrays holds a primitive type, the other array must
* hold the same type.
*/
bool srcPrim = (srcType != '[' && srcType != 'L');
bool dstPrim = (dstType != '[' && dstType != 'L');
if (srcPrim || dstPrim) {
if (srcPrim != dstPrim || srcType != dstType) {
dvmThrowArrayStoreExceptionIncompatibleArrays(srcClass, dstClass);
RETURN_VOID();
}
if (false) ALOGD("arraycopy prim[%c] dst=%p %d src=%p %d len=%d",
srcType, dstArray->contents, dstPos,
srcArray->contents, srcPos, length);
switch (srcType) {
case 'B':
case 'Z':
/* 1 byte per element */
memmove((u1*) dstArray->contents + dstPos,
(const u1*) srcArray->contents + srcPos,
length);
break;
case 'C':
case 'S':
/* 2 bytes per element */
move16((u1*) dstArray->contents + dstPos * 2,
(const u1*) srcArray->contents + srcPos * 2,
length * 2);
break;
case 'F':
case 'I':
/* 4 bytes per element */
move32((u1*) dstArray->contents + dstPos * 4,
(const u1*) srcArray->contents + srcPos * 4,
length * 4);
break;
case 'D':
case 'J':
/*
* 8 bytes per element. We don't need to guarantee atomicity
* of the entire 64-bit word, so we can use the 32-bit copier.
*/
move32((u1*) dstArray->contents + dstPos * 8,
(const u1*) srcArray->contents + srcPos * 8,
length * 8);
break;
default: /* illegal array type */
ALOGE("Weird array type '%s'", srcClass->descriptor);
dvmAbort();
}
} else {
/*
* Neither class is primitive. See if elements in "src" are instances
* of elements in "dst" (e.g. copy String to String or String to
* Object).
*/
const int width = sizeof(Object*);
if (srcClass->arrayDim == dstClass->arrayDim &&
dvmInstanceof(srcClass, dstClass))
{
/*
* "dst" can hold "src"; copy the whole thing.
*/
if (false) ALOGD("arraycopy ref dst=%p %d src=%p %d len=%d",
dstArray->contents, dstPos * width,
srcArray->contents, srcPos * width,
length * width);
move32((u1*)dstArray->contents + dstPos * width,
(const u1*)srcArray->contents + srcPos * width,
length * width);
dvmWriteBarrierArray(dstArray, dstPos, dstPos+length);
} else {
/*
* The arrays are not fundamentally compatible. However, we
* may still be able to do this if the destination object is
* compatible (e.g. copy Object[] to String[], but the Object
* being copied is actually a String). We need to copy elements
* one by one until something goes wrong.
*
* Because of overlapping moves, what we really want to do
* is compare the types and count up how many we can move,
* then call move32() to shift the actual data. If we just
* start from the front we could do a smear rather than a move.
*/
Object** srcObj;
int copyCount;
ClassObject* clazz = NULL;
srcObj = ((Object**)(void*)srcArray->contents) + srcPos;
if (length > 0 && srcObj[0] != NULL)
{
clazz = srcObj[0]->clazz;
if (!dvmCanPutArrayElement(clazz, dstClass))
clazz = NULL;
}
for (copyCount = 0; copyCount < length; copyCount++)
{
if (srcObj[copyCount] != NULL &&
srcObj[copyCount]->clazz != clazz &&
!dvmCanPutArrayElement(srcObj[copyCount]->clazz, dstClass))
{
/* can't put this element into the array */
break;
}
}
if (false) ALOGD("arraycopy iref dst=%p %d src=%p %d count=%d of %d",
dstArray->contents, dstPos * width,
srcArray->contents, srcPos * width,
copyCount, length);
move32((u1*)dstArray->contents + dstPos * width,
(const u1*)srcArray->contents + srcPos * width,
copyCount * width);
dvmWriteBarrierArray(dstArray, 0, copyCount);
if (copyCount != length) {
dvmThrowArrayStoreExceptionIncompatibleArrayElement(srcPos + copyCount,
srcObj[copyCount]->clazz, dstClass);
RETURN_VOID();
}
}
}
RETURN_VOID();
}