OpenCv 2.3 C - 如何隔离图像内的对象

时间:2012-04-25 12:25:01

标签: c++ c opencv image-processing

我的图像如下:

source

我想删除数字周围的黑色行和列。 所以我希望结果是:

output

我试试这个:

void findX(IplImage* imgSrc,int* min, int* max){
    int i;
    int minFound=0;
    CvMat data;
    CvScalar maxVal=cvRealScalar(imgSrc->width * 255);
    CvScalar val=cvRealScalar(0);
    //For each col sum, if sum < width*255 then we find the min
    //then continue to end to search the max, if sum< width*255 then is new max
    for (i=0; i< imgSrc->width; i++){
        cvGetCol(imgSrc, &data, i);
        val= cvSum(&data);
        if(val.val[0] < maxVal.val[0]){
            *max= i;
            if(!minFound){
                *min= i;
                minFound= 1;
            }
        }
    }
}

void findY(IplImage* imgSrc,int* min, int* max){
    int i;
    int minFound=0;
    CvMat data;
    CvScalar maxVal=cvRealScalar(imgSrc->width * 255);
    CvScalar val=cvRealScalar(0);
    //For each col sum, if sum < width*255 then we find the min
    //then continue to end to search the max, if sum< width*255 then is new max
    for (i=0; i< imgSrc->height; i++){
        cvGetRow(imgSrc, &data, i);
        val= cvSum(&data);
        if(val.val[0] < maxVal.val[0]){
            *max=i;
            if(!minFound){
                *min= i;
                minFound= 1;
            }
        }
    }
}
CvRect findBB(IplImage* imgSrc){
    CvRect aux;
    int xmin, xmax, ymin, ymax;
    xmin=xmax=ymin=ymax=0;

    findX(imgSrc, &xmin, &xmax);
    findY(imgSrc, &ymin, &ymax);

    aux=cvRect(xmin, ymin, xmax-xmin, ymax-ymin);

    //printf("BB: %d,%d - %d,%d\n", aux.x, aux.y, aux.width, aux.height);

    return aux;

}

所以我使用:

IplImage *my_image = cvLoad....
CvRect bb = findBB(my_image);
IplImage *new_image = cvCreateImage(cvSize(bb.width,bb.height), my_image->depth, 1);
cvShowImage("test",new_image);

它不能正常工作,因为我试图检查新图像中是否有黑色行或列并且它们存在。我能做什么?有人能帮我吗? (对不起我的英文!)

1 个答案:

答案 0 :(得分:24)

一种方法是简单地执行the bounding box technique来检测数字,如下图所示:

enter image description here

由于你的图像已被处理,我使用的边界框技术要简单得多。

在此过程之后,您真正需要做的就是将原始图像的ROI(感兴趣区域)设置为框中定义的区域,以实现裁剪效果并隔离对象:

enter image description here

请注意,在生成的图像中,边框中有一个额外的行/列像素不是白色。嗯,他们也不是黑人。那是因为我没有执行任何阈值方法将图像二值化为黑白。下面的代码演示了在图像的灰度版本上执行的边界框技术。

这几乎是实现您想要的路线图。出于教育目的,我正在使用OpenCV的C ++接口共享我编写的代码。我相信你有能力将它转换为C接口。

#include <cv.h>
#include <highgui.h>

#include <vector>


int main(int argc, char* argv[])
{
    cv::Mat img = cv::imread(argv[1]);

    // Convert RGB Mat to GRAY
    cv::Mat gray;
    cv::cvtColor(img, gray, CV_BGR2GRAY);

    // Store the set of points in the image before assembling the bounding box
    std::vector<cv::Point> points;
    cv::Mat_<uchar>::iterator it = gray.begin<uchar>();
    cv::Mat_<uchar>::iterator end = gray.end<uchar>();
    for (; it != end; ++it)
    {
        if (*it) points.push_back(it.pos());
    }

    // Compute minimal bounding box
    cv::RotatedRect box = cv::minAreaRect(cv::Mat(points));

// Draw bounding box in the original image (debug purposes)
//cv::Point2f vertices[4];
//box.points(vertices);
//for (int i = 0; i < 4; ++i)
//{
        //cv::line(img, vertices[i], vertices[(i + 1) % 4], cv::Scalar(0, 255, 0), 1, CV_AA);
//}
//cv::imshow("box", img);
//cv::imwrite("box.png", img);

    // Set Region of Interest to the area defined by the box
    cv::Rect roi;
    roi.x = box.center.x - (box.size.width / 2);
    roi.y = box.center.y - (box.size.height / 2);
    roi.width = box.size.width;
    roi.height = box.size.height;

    // Crop the original image to the defined ROI
    cv::Mat crop = img(roi);
    cv::imshow("crop", crop);

    cv::imwrite("cropped.png", crop);
    cvWaitKey(0);

    return 0;
}