.Net中的优先级队列

时间:2008-09-19 14:43:54

标签: c# .net data-structures heap priority-queue

我正在寻找优先级队列或堆数据结构的.NET实现

  

优先级队列是比简单排序提供更多灵活性的数据结构,因为它们允许新元素以任意间隔进入系统。将新作业插入优先级队列比在每次到达时重新排序所有内容更具成本效益。

     

基本优先级队列支持三种主要操作:

     
      
  • 插入(Q,X)。给定带有密钥k的项x,将其插入优先级队列Q。
  •   
  • 查找-最小(Q)。返回指向该项目的指针   其键值小于优先级队列中的任何其他键   Q值。
  •   
  • 删除 - 最小(Q)。从密钥最小的优先级队列Q中删除该项
  •   

除非我找错了地方,否则框架中没有一个。有人知道一个好的,或者我应该自己推?

14 个答案:

答案 0 :(得分:66)

您可能希望来自C5 Generic Collection Library的IntervalHeap。引用user guide

  

IntervalHeap<T>使用存储为对数组的间隔堆来实现接口IPriorityQueue<T>。 FindMin和   FindMax操作和索引器的get-accessor需要时间O(1)。 DeleteMin,   DeleteMax,添加和更新操作以及索引器的set-accessor需要时间   O(log n)。与普通优先级队列相比,间隔堆提供最小值   并以最高效率运作。

API很简单

> var heap = new C5.IntervalHeap<int>();
> heap.Add(10);
> heap.Add(5);
> heap.FindMin();
5

从Nuget https://www.nuget.org/packages/C5或GitHub https://github.com/sestoft/C5/

安装

答案 1 :(得分:49)

这是我在.NET堆上的尝试

public abstract class Heap<T> : IEnumerable<T>
{
    private const int InitialCapacity = 0;
    private const int GrowFactor = 2;
    private const int MinGrow = 1;

    private int _capacity = InitialCapacity;
    private T[] _heap = new T[InitialCapacity];
    private int _tail = 0;

    public int Count { get { return _tail; } }
    public int Capacity { get { return _capacity; } }

    protected Comparer<T> Comparer { get; private set; }
    protected abstract bool Dominates(T x, T y);

    protected Heap() : this(Comparer<T>.Default)
    {
    }

    protected Heap(Comparer<T> comparer) : this(Enumerable.Empty<T>(), comparer)
    {
    }

    protected Heap(IEnumerable<T> collection)
        : this(collection, Comparer<T>.Default)
    {
    }

    protected Heap(IEnumerable<T> collection, Comparer<T> comparer)
    {
        if (collection == null) throw new ArgumentNullException("collection");
        if (comparer == null) throw new ArgumentNullException("comparer");

        Comparer = comparer;

        foreach (var item in collection)
        {
            if (Count == Capacity)
                Grow();

            _heap[_tail++] = item;
        }

        for (int i = Parent(_tail - 1); i >= 0; i--)
            BubbleDown(i);
    }

    public void Add(T item)
    {
        if (Count == Capacity)
            Grow();

        _heap[_tail++] = item;
        BubbleUp(_tail - 1);
    }

    private void BubbleUp(int i)
    {
        if (i == 0 || Dominates(_heap[Parent(i)], _heap[i])) 
            return; //correct domination (or root)

        Swap(i, Parent(i));
        BubbleUp(Parent(i));
    }

    public T GetMin()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        return _heap[0];
    }

    public T ExtractDominating()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        T ret = _heap[0];
        _tail--;
        Swap(_tail, 0);
        BubbleDown(0);
        return ret;
    }

    private void BubbleDown(int i)
    {
        int dominatingNode = Dominating(i);
        if (dominatingNode == i) return;
        Swap(i, dominatingNode);
        BubbleDown(dominatingNode);
    }

    private int Dominating(int i)
    {
        int dominatingNode = i;
        dominatingNode = GetDominating(YoungChild(i), dominatingNode);
        dominatingNode = GetDominating(OldChild(i), dominatingNode);

        return dominatingNode;
    }

    private int GetDominating(int newNode, int dominatingNode)
    {
        if (newNode < _tail && !Dominates(_heap[dominatingNode], _heap[newNode]))
            return newNode;
        else
            return dominatingNode;
    }

    private void Swap(int i, int j)
    {
        T tmp = _heap[i];
        _heap[i] = _heap[j];
        _heap[j] = tmp;
    }

    private static int Parent(int i)
    {
        return (i + 1)/2 - 1;
    }

    private static int YoungChild(int i)
    {
        return (i + 1)*2 - 1;
    }

    private static int OldChild(int i)
    {
        return YoungChild(i) + 1;
    }

    private void Grow()
    {
        int newCapacity = _capacity*GrowFactor + MinGrow;
        var newHeap = new T[newCapacity];
        Array.Copy(_heap, newHeap, _capacity);
        _heap = newHeap;
        _capacity = newCapacity;
    }

    public IEnumerator<T> GetEnumerator()
    {
        return _heap.Take(Count).GetEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
}

public class MaxHeap<T> : Heap<T>
{
    public MaxHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MaxHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) >= 0;
    }
}

public class MinHeap<T> : Heap<T>
{
    public MinHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MinHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MinHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    public MinHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) <= 0;
    }
}

一些测试:

[TestClass]
public class HeapTests
{
    [TestMethod]
    public void TestHeapBySorting()
    {
        var minHeap = new MinHeap<int>(new[] {9, 8, 4, 1, 6, 2, 7, 4, 1, 2});
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        minHeap = new MinHeap<int> { 7, 5, 1, 6, 3, 2, 4, 1, 2, 1, 3, 4, 7 };
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        var maxHeap = new MaxHeap<int>(new[] {1, 5, 3, 2, 7, 56, 3, 1, 23, 5, 2, 1});
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());

        maxHeap = new MaxHeap<int> {2, 6, 1, 3, 56, 1, 4, 7, 8, 23, 4, 5, 7, 34, 1, 4};
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());
    }

    private static void AssertHeapSort(Heap<int> heap, IEnumerable<int> expected)
    {
        var sorted = new List<int>();
        while (heap.Count > 0)
            sorted.Add(heap.ExtractDominating());

        Assert.IsTrue(sorted.SequenceEqual(expected));
    }
}

答案 2 :(得分:39)

我喜欢使用PowerCollections中的OrderedBagOrderedSet类作为优先级队列。

答案 3 :(得分:21)

这是我刚写的一个,也许它不是优化的(只是使用排序的字典),但很容易理解。 你可以插入不同种类的对象,所以没有通用队列。

using System;
using System.Diagnostics;
using System.Collections;
using System.Collections.Generic;

namespace PrioQueue
{
    public class PrioQueue
    {
        int total_size;
        SortedDictionary<int, Queue> storage;

        public PrioQueue ()
        {
            this.storage = new SortedDictionary<int, Queue> ();
            this.total_size = 0;
        }

        public bool IsEmpty ()
        {
            return (total_size == 0);
        }

        public object Dequeue ()
        {
            if (IsEmpty ()) {
                throw new Exception ("Please check that priorityQueue is not empty before dequeing");
            } else
                foreach (Queue q in storage.Values) {
                    // we use a sorted dictionary
                    if (q.Count > 0) {
                        total_size--;
                        return q.Dequeue ();
                    }
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        // same as above, except for peek.

        public object Peek ()
        {
            if (IsEmpty ())
                throw new Exception ("Please check that priorityQueue is not empty before peeking");
            else
                foreach (Queue q in storage.Values) {
                    if (q.Count > 0)
                        return q.Peek ();
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        public object Dequeue (int prio)
        {
            total_size--;
            return storage[prio].Dequeue ();
        }

        public void Enqueue (object item, int prio)
        {
            if (!storage.ContainsKey (prio)) {
                storage.Add (prio, new Queue ());
              }
            storage[prio].Enqueue (item);
            total_size++;

        }
    }
}

答案 4 :(得分:9)

我在Julian Bucknall的博客上发现了一个 - http://www.boyet.com/Articles/PriorityQueueCSharp3.html

我们稍微修改了它,以便队列中的低优先级项目最终会随着时间的推移“冒泡”到顶部,因此它们不会遭受饥饿。

答案 5 :(得分:7)

Microsoft Collections for .NET中所述,Microsoft已在.NET Framework中编写(并在线共享)2 internal PriorityQueue classes。他们的代码可以试用。

编辑:正如@ mathusum-mut评论的那样,Microsoft的一个内部PriorityQueue类中存在一个错误(SO社区当然为它提供了修复):Bug in Microsoft's internal PriorityQueue<T>?

答案 6 :(得分:6)

您可能会发现这个实现很有用: http://www.codeproject.com/Articles/126751/Priority-queue-in-Csharp-with-help-of-heap-data-st.aspx

它是通用的,基于堆数据结构

答案 7 :(得分:6)

class PriorityQueue<T>
{
    IComparer<T> comparer;
    T[] heap;
    public int Count { get; private set; }
    public PriorityQueue() : this(null) { }
    public PriorityQueue(int capacity) : this(capacity, null) { }
    public PriorityQueue(IComparer<T> comparer) : this(16, comparer) { }
    public PriorityQueue(int capacity, IComparer<T> comparer)
    {
        this.comparer = (comparer == null) ? Comparer<T>.Default : comparer;
        this.heap = new T[capacity];
    }
    public void push(T v)
    {
        if (Count >= heap.Length) Array.Resize(ref heap, Count * 2);
        heap[Count] = v;
        SiftUp(Count++);
    }
    public T pop()
    {
        var v = top();
        heap[0] = heap[--Count];
        if (Count > 0) SiftDown(0);
        return v;
    }
    public T top()
    {
        if (Count > 0) return heap[0];
        throw new InvalidOperationException("优先队列为空");
    }
    void SiftUp(int n)
    {
        var v = heap[n];
        for (var n2 = n / 2; n > 0 && comparer.Compare(v, heap[n2]) > 0; n = n2, n2 /= 2) heap[n] = heap[n2];
        heap[n] = v;
    }
    void SiftDown(int n)
    {
        var v = heap[n];
        for (var n2 = n * 2; n2 < Count; n = n2, n2 *= 2)
        {
            if (n2 + 1 < Count && comparer.Compare(heap[n2 + 1], heap[n2]) > 0) n2++;
            if (comparer.Compare(v, heap[n2]) >= 0) break;
            heap[n] = heap[n2];
        }
        heap[n] = v;
    }
}

容易。

答案 8 :(得分:3)

在Java Collections框架中的Java实现(java.util.PriorityQueue)上使用Java to C#转换器,或者更智能地使用算法和核心代码并将其插入到您自己的C#类中,使其符合用于队列的C#集合框架API,或至少是集合。

答案 9 :(得分:3)

AlgoKit

我写了一个名为AlgoKit的开源库,可以通过NuGet获得。它包含:

  • 隐式d-ary堆(ArrayHeap),
  • 二项式数据
  • 配对

该代码已经过广泛测试。我绝对建议你试一试。

实施例

var comparer = Comparer<int>.Default;
var heap = new PairingHeap<int, string>(comparer);

heap.Add(3, "your");
heap.Add(5, "of");
heap.Add(7, "disturbing.");
heap.Add(2, "find");
heap.Add(1, "I");
heap.Add(6, "faith");
heap.Add(4, "lack");

while (!heap.IsEmpty)
    Console.WriteLine(heap.Pop().Value);

为什么这三个堆?

实施的最佳选择是强烈依赖于输入的 - 正如Larkin,Sen和Tarjan在对优先级队列的回归基础实证研究arXiv:1403.0252v1 [cs.DS]中所示。他们测试了隐式d-ary堆,配对堆,Fibonacci堆,二项式堆,显式d-ary堆,等级配对堆,地震堆,违规堆,等级松弛弱堆和严格的斐波纳契堆。

AlgoKit具有三种类型的堆,在测试中看起来效率最高。

提示选择

对于相对较少数量的元素,您可能会对使用隐式堆很感兴趣,尤其是四元堆(隐式4-ary)。如果在较大的堆大小上运行,像二项式堆和配对堆这样的分摊结构应该会表现得更好。

答案 10 :(得分:2)

以下是NGenerics团队的另一项实施:

NGenerics PriorityQueue

答案 11 :(得分:1)

我最近遇到了同样的问题,最后为此创建了NuGet package

这实现了标准的基于堆的优先级队列。它还具有BCL集合的所有常见细节:ICollection<T>IReadOnlyCollection<T>实现,自定义IComparer<T>支持,指定初始容量的能力以及DebuggerTypeProxy来实现集合更容易在调试器中使用。

还有一个Inline版本的软件包,只需将一个.cs文件安装到您的项目中(如果您想避免使用外部可见的依赖项,则非常有用)。

github page上提供了更多信息。

答案 12 :(得分:1)

简单的最大堆实现。

https://github.com/bharathkumarms/AlgorithmsMadeEasy/blob/master/AlgorithmsMadeEasy/MaxHeap.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace AlgorithmsMadeEasy
{
    class MaxHeap
    {
        private static int capacity = 10;
        private int size = 0;
        int[] items = new int[capacity];

        private int getLeftChildIndex(int parentIndex) { return 2 * parentIndex + 1; }
        private int getRightChildIndex(int parentIndex) { return 2 * parentIndex + 2; }
        private int getParentIndex(int childIndex) { return (childIndex - 1) / 2; }

        private int getLeftChild(int parentIndex) { return this.items[getLeftChildIndex(parentIndex)]; }
        private int getRightChild(int parentIndex) { return this.items[getRightChildIndex(parentIndex)]; }
        private int getParent(int childIndex) { return this.items[getParentIndex(childIndex)]; }

        private bool hasLeftChild(int parentIndex) { return getLeftChildIndex(parentIndex) < size; }
        private bool hasRightChild(int parentIndex) { return getRightChildIndex(parentIndex) < size; }
        private bool hasParent(int childIndex) { return getLeftChildIndex(childIndex) > 0; }

        private void swap(int indexOne, int indexTwo)
        {
            int temp = this.items[indexOne];
            this.items[indexOne] = this.items[indexTwo];
            this.items[indexTwo] = temp;
        }

        private void hasEnoughCapacity()
        {
            if (this.size == capacity)
            {
                Array.Resize(ref this.items,capacity*2);
                capacity *= 2;
            }
        }

        public void Add(int item)
        {
            this.hasEnoughCapacity();
            this.items[size] = item;
            this.size++;
            heapifyUp();
        }

        public int Remove()
        {
            int item = this.items[0];
            this.items[0] = this.items[size-1];
            this.items[this.size - 1] = 0;
            size--;
            heapifyDown();
            return item;
        }

        private void heapifyUp()
        {
            int index = this.size - 1;
            while (hasParent(index) && this.items[index] > getParent(index))
            {
                swap(index, getParentIndex(index));
                index = getParentIndex(index);
            }
        }

        private void heapifyDown()
        {
            int index = 0;
            while (hasLeftChild(index))
            {
                int bigChildIndex = getLeftChildIndex(index);
                if (hasRightChild(index) && getLeftChild(index) < getRightChild(index))
                {
                    bigChildIndex = getRightChildIndex(index);
                }

                if (this.items[bigChildIndex] < this.items[index])
                {
                    break;
                }
                else
                {
                    swap(bigChildIndex,index);
                    index = bigChildIndex;
                }
            }
        }
    }
}

/*
Calling Code:
    MaxHeap mh = new MaxHeap();
    mh.Add(10);
    mh.Add(5);
    mh.Add(2);
    mh.Add(1);
    mh.Add(50);
    int maxVal  = mh.Remove();
    int newMaxVal = mh.Remove();
*/

答案 13 :(得分:-2)

PriorityQueue的以下实现使用系统库中的SortedSet

using System;
using System.Collections.Generic;

namespace CDiggins
{
    interface IPriorityQueue<T, K> where K : IComparable<K>
    {
        bool Empty { get; }
        void Enqueue(T x, K key);
        void Dequeue();
        T Top { get; }
    }

    class PriorityQueue<T, K> : IPriorityQueue<T, K> where K : IComparable<K>
    {
        SortedSet<Tuple<T, K>> set;

        class Comparer : IComparer<Tuple<T, K>> {
            public int Compare(Tuple<T, K> x, Tuple<T, K> y) {
                return x.Item2.CompareTo(y.Item2);
            }
        }

        PriorityQueue() { set = new SortedSet<Tuple<T, K>>(new Comparer()); }
        public bool Empty { get { return set.Count == 0;  } }
        public void Enqueue(T x, K key) { set.Add(Tuple.Create(x, key)); }
        public void Dequeue() { set.Remove(set.Max); }
        public T Top { get { return set.Max.Item1; } }
    }
}