更改WorkGroups维度时,无法通过AMD样本减少来减少Opencl Sum

时间:2012-04-13 17:30:52

标签: kernel opencl reduction

以下代码来自the amd website

__kernel
void reduce(__global float* buffer,
            __local float* scratch,
            __const int length,
            __global float* result) {

  int global_index = get_global_id(0);
  float accumulator = INFINITY;
  // Loop sequentially over chunks of input vector
  while (global_index < length) {
    float element = buffer[global_index];
    accumulator = (accumulator < element) ? accumulator : element;
    global_index += get_global_size(0);
  }

  // Perform parallel reduction
  int local_index = get_local_id(0);
  scratch[local_index] = accumulator;
  barrier(CLK_LOCAL_MEM_FENCE);
  for(int offset = get_local_size(0) / 2;
      offset > 0;
      offset = offset / 2) {
    if (local_index < offset) {
      float other = scratch[local_index + offset];
      float mine = scratch[local_index];
      scratch[local_index] = (mine < other) ? mine : other;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
  }
  if (local_index == 0) {
     result[get_group_id(0)] = scratch[0];
  }
}

我对它进行了调整,使其可以减少总和:

__kernel
void reduce(__global float* buffer,
            __local float* scratch,
            __const int length,
            __global float* result) {

  int global_index = get_global_id(0);
  float accumulator = 0.0;
  // Loop sequentially over chunks of input vector
  while (global_index < length) {
    float element = buffer[global_index];
    accumulator = accumulator + element;
    global_index += get_global_size(0);
  }

  // Perform parallel reduction
  int local_index = get_local_id(0);
  scratch[local_index] = accumulator;
  barrier(CLK_LOCAL_MEM_FENCE);
  for(int offset = get_local_size(0) / 2;
      offset > 0;
      offset = offset / 2) {
    if (local_index < offset) {
      float other = scratch[local_index + offset];
      float mine = scratch[local_index];
      scratch[local_index] = mine + other;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
  }
  if (local_index == 0) {
     result[get_group_id(0)] = scratch[0];
  }
}

当我使用一个唯一的工作组(意思是我将NULL作为local_work_size添加到clEnqueueNDRangeKernel())时,它就像一个魅力,但当我尝试时,事情就失控了更改工作组维度。 (我应该说我是OpenCl的新手)

我的工作如下

#define GLOBAL_DIM 600
#define WORK_DIM 60

size_t global_1D[3] = {GLOBAL_DIM,1,1};
size_t work_dim[3] = {WORK_DIM,1,1};
err = clEnqueueNDRangeKernel(commands, av_velocity_kernel, 1, NULL, global_1D, work_dim, 0, NULL, NULL); //TODO CHECK THIS LINE
if (err)    {
  printf("Error: Failed to execute av_velocity_kernel!\n");            printf("\n%s",err_code(err));   fflush(stdout);      return EXIT_FAILURE;    }

我做错了吗?

此外,我注意到如果我设置#define GLOBAL_DIM 60000(这是我需要的),我的本地内存耗尽。如果我使用多个工作组,或者本地内存在工作组之间均匀分布,我会获得“更多”本地内存吗?

1 个答案:

答案 0 :(得分:0)

首先,如果工作组大小是2的幂,那些还原内核只能正常工作。这意味着你应该使用64而不是60.而且,更改GLOBAL_DIM无法让你耗尽本地内存:在调用内核时,你最有可能做错了。