使用以下数据
create table #ph (product int, [date] date, price int)
insert into #ph select 1, '20120101', 1
insert into #ph select 1, '20120102', 1
insert into #ph select 1, '20120103', 1
insert into #ph select 1, '20120104', 1
insert into #ph select 1, '20120105', 2
insert into #ph select 1, '20120106', 2
insert into #ph select 1, '20120107', 2
insert into #ph select 1, '20120108', 2
insert into #ph select 1, '20120109', 1
insert into #ph select 1, '20120110', 1
insert into #ph select 1, '20120111', 1
insert into #ph select 1, '20120112', 1
我想产生以下输出:
product | date_from | date_to | price
1 | 20120101 | 20120105 | 1
1 | 20120105 | 20120109 | 2
1 | 20120109 | 20120112 | 1
如果我按价格分组并显示最大和最小日期,那么我将得到以下不是我想要的(参见日期的重叠)。
product | date_from | date_to | price
1 | 20120101 | 20120112 | 1
1 | 20120105 | 20120108 | 2
基本上,我希望做的是根据组列产品和价格对数据进行分组更改。
实现这一目标的最简洁方法是什么?
答案 0 :(得分:23)
有一种(或多或少)已知的解决此类问题的技术,涉及两个ROW_NUMBER()
调用,如下所示:
WITH marked AS (
SELECT
*,
grp = ROW_NUMBER() OVER (PARTITION BY product ORDER BY date)
- ROW_NUMBER() OVER (PARTITION BY product, price ORDER BY date)
FROM #ph
)
SELECT
product,
date_from = MIN(date),
date_to = MAX(date),
price
FROM marked
GROUP BY
product,
price,
grp
ORDER BY
product,
MIN(date)
输出:
product date_from date_to price
------- ---------- ------------- -----
1 2012-01-01 2012-01-04 1
1 2012-01-05 2012-01-08 2
1 2012-01-09 2012-01-12 1
答案 1 :(得分:2)
我是这个论坛的新手,所以希望我的贡献是有帮助的。
如果你真的不想使用CTE(尽管我认为这可能是最好的方法),你可以使用基于集合的代码获得解决方案。您需要测试此代码的性能!。
我添加了一个额外的临时表,以便我可以为每条记录使用唯一的标识符,但我怀疑你的源表中已经有了这个列。所以这是临时表。
If Exists (SELECT Name FROM tempdb.sys.tables WHERE name LIKE '#phwithId%')
DROP TABLE #phwithId
CREATE TABLE #phwithId
(
SaleId INT
, ProductID INT
, Price Money
, SaleDate Date
)
INSERT INTO #phwithId SELECT row_number() over(partition by product order by [date] asc) as SalesId, Product, Price, Date FROM ph
现在是Select语句的主体
SELECT
productId
, date_from
, date_to
, Price
FROM
(
SELECT
dfr.ProductId
, ROW_NUMBER() OVER (PARTITION BY ProductId ORDER BY ChangeDate) AS rowno1
, ChangeDate AS date_from
, dfr.Price
FROM
(
SELECT
sl1.ProductId AS ProductId
, sl1.SaleDate AS ChangeDate
, sl1.price
FROM
#phwithId sl1
LEFT JOIN
#phwithId sl2
ON sl1.SaleId = sl2.SaleId + 1
WHERE
sl1.Price <> sl2.Price OR sl2.Price IS NULL
) dfr
) da1
LEFT JOIN
(
SELECT
ROW_NUMBER() OVER (PARTITION BY ProductId ORDER BY ChangeDate) AS rowno2
, ChangeDate AS date_to
FROM
(
SELECT
sl1.ProductId
, sl1.SaleDate AS ChangeDate
FROM
#phwithId sl1
LEFT JOIN
#phwithId sl3
ON sl1.SaleId = sl3.SaleId - 1
WHERE
sl1.Price <> sl3.Price OR sl3.Price IS NULL
) dto
) da2
ON da1.rowno1 = da2.rowno2
通过将数据源偏移量绑定1个记录(+或 - ),我们可以确定价格桶何时发生变化,然后只需将桶的开始和结束日期恢复为单个记录。
一切都有点繁琐,我不确定它会给出更好的表现,但我很享受这个挑战。
答案 2 :(得分:1)
WITH marked AS (
SELECT
*,
case
when (lag(price,1,'') over (partition by product order by date_from)) = price
then 0 else 1
end is_price_change
FROM #ph
),
marked_as_group AS
( SELECT m.*,
SUM(is_price_change) over (PARTITION BY product order by date_from ROWS
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS price_change_group
FROM marked m
),
SELECT
product,
date_from = MIN(date_from),
date_to = MAX(date_to),
price = MIN(price)
FROM marked_as_group
GROUP BY
product,
price_change_group
ORDER BY
product,
date_to
答案 3 :(得分:0)
我提出的一个相对“干净”的解决方案是:
;with cte_sort (product, [date], price, [row])
as
(select product, [date], price, row_number() over(partition by product order by [date] asc) as row
from #ph)
select a.product, a.[date] as date_from, c.[date] as date_to, a.price
from cte_sort a
left outer join cte_sort b on a.product = b.product and (a.row+1) = b.row and a.price = b.price
outer apply (select top 1 [date] from cte_sort z where z.product = a.product and z.row > a.row order by z.row) c
where b.row is null
order by a.[date]
我使用了row_number
的CTE,因为如果使用dateadd
等函数,则无需担心是否缺少任何日期。如果你想拥有date_to列(我这样做),你显然只需要外部申请。
这个解决方案确实解决了我的问题,但是我遇到了一个小问题,让它在我的500万行表上尽可能快地执行。
答案 4 :(得分:-1)
Create function [dbo].[AF_TableColumns](@table_name nvarchar(55))
returns nvarchar(4000) as
begin
declare @str nvarchar(4000)
select @str = cast(rtrim(ltrim(column_name)) as nvarchar(500)) + coalesce(' ' + @str , ' ')
from information_schema.columns
where table_name = @table_name
group by table_name, column_name, ordinal_position
order by ordinal_position DESC
return @str
end
--select dbo.AF_TableColumns('YourTable') Select * from YourTable