我有一些这样的数据,其中第二个字段是第一个字段的概率,因此“0:0.017”表示存在0.017的概率。所有概率的总和为1.
我的问题是:如何根据概率“范围线”,以便找到每个角色的下限和上限?所以0将是[0,0.017),[0.017,0.022],依此类推。
我正在尝试实现算术编码。
(0: 0.017,
1: 0.022,
2: 0.033,
3: 0.033,
4: 0.029,
5: 0.028,
6: 0.035,
7: 0.032,
8: 0.028,
9: 0.027,
a: 0.019,
b: 0.022,
c: 0.029,
d: 0.03,
e: 0.028,
f: 0.035,
g: 0.026,
h: 0.037,
i: 0.029,
j: 0.025,
k: 0.025,
l: 0.037,
m: 0.025,
n: 0.023,
o: 0.026,
p: 0.035,
q: 0.033,
r: 0.031,
s: 0.023,
t: 0.022,
u: 0.038,
v: 0.022,
w: 0.016,
x: 0.026,
y: 0.021,
z: 0.033,)
编辑*
nvm我想通了,只是弄乱了愚蠢的数学......感谢所有的输入!
答案 0 :(得分:2)
将您的数据转换为python是一项练习:
>>> corpus = [('0', 0.017), ('1', 0.022), ('2', 0.033), ('3', 0.033), ('4', 0.029),
... ('5', 0.028), ('6', 0.035), ('7', 0.032), ('8', 0.028), ('9', 0.027),
... ('a', 0.019), ('b', 0.022), ('c', 0.029), ('d', 0.030), ('e', 0.028),
... ('f', 0.035), ('g', 0.026), ('h', 0.037), ('i', 0.029), ('j', 0.025),
... ('k', 0.025), ('l', 0.037), ('m', 0.025), ('n', 0.023), ('o', 0.026),
... ('p', 0.035), ('q', 0.033), ('r', 0.031), ('s', 0.023), ('t', 0.022),
... ('u', 0.038), ('v', 0.022), ('w', 0.016), ('x', 0.026), ('y', 0.021),
... ('z', 0.033)]
创建累积总和:
>>> distribution = []
>>> total = 0.0
>>> for letter, frequency in corpus:
... distribution.append(total)
... total += frequency
...
实际上使用这种数据是bisect
模块的基础。
>>> import bisect, random
>>> def random_letter():
... value = random.random()
... index = bisect.bisect(distribution, value) - 1
... return corpus[index][0]
...
>>> [random_letter() for n in range(10)] # doctest: +SKIP
['d', '6', 'p', 'c', '8', 'f', '7', 'm', 'z', '7']
答案 1 :(得分:2)
# The data is input as '1: 0.022,' format
def process_data(line):
# for returning the new string that is cleaned up
result_line = ''
for character in line:
# check if it is either a number or a letter
if character.isdigit() or character.isalpha():
result_line += character
# we want the decimal point
elif character == '.':
result_line += character
# else we replace it with space ' '
else:
result_line += ' '
return result_line
my_list = []
with open('input.txt') as file:
for lines in file:
processed_line = process_data(lines)
# temp_list has ['letter', 'frequency']
temp_list = (processed_line.split())
value = temp_list[0]
# Require to cast it to a float, since it is a string
frequency = float(temp_list[1])
my_list.append([value, frequency])
print(my_list)
从这一点开始,您可以弄清楚如何处理您的价值观。我记录了代码(授予了处理输入文件的一种非常简单的天真方式)。但my_list
现在干净且格式正确,string
(值)和float
(频率)。希望这有帮助。
从上面输出代码:
[['0', 0.017], ['1', 0.022], ['2', 0.033], ['3', 0.033],
['4', 0.029], ['5', 0.028], ['6', 0.035], ['7', 0.032],
['8', 0.028], ['9', 0.027], ['a', 0.019], ['b', 0.022],
['c', 0.029], ['d', 0.03], ['e', 0.028], ['f', 0.035],
['g', 0.026], ['h', 0.037], ['i', 0.029], ['j', 0.025],
['k', 0.025], ['l', 0.037], ['m', 0.025], ['n', 0.023],
['o', 0.026], ['p', 0.035], ['q', 0.033], ['r', 0.031],
['s', 0.023], ['t', 0.022], ['u', 0.038], ['v', 0.022],
['w', 0.016], ['x', 0.026], ['y', 0.021], ['z', 0.033]]
然后......
# Took a page out of TokenMacGuy, credit to him
distribution = []
distribution.append(0.00)
total = 0.0 # Create a float here
for entry in my_list:
distribution.append(entry[1])
total += frequency
total = round(total, 3) # Rounding to 2 decimal points
distribution.append(1.00) # Missing the 1.00 value
print(distribution) # Print to check
输出在这里:
[0.0, 0.017, 0.022, 0.033, 0.033, 0.029, 0.028, 0.035, 0.032,
0.028, 0.027, 0.019, 0.022, 0.029, 0.03, 0.028, 0.035, 0.026,
0.037, 0.029, 0.025, 0.025, 0.037, 0.025, 0.023, 0.026, 0.035,
0.033, 0.031, 0.023, 0.022, 0.038, 0.022, 0.016, 0.026, 0.021,
0.033, 1.0]
最后,输出最终结果:没有什么特别之处,我使用pattern
和format
让它们看起来更漂亮。并且它几乎是根据ninjagecko的方法来计算它的。由于计算没有显示,我确实必须将0.00和1.00填入分布。非常直接的实施在后我们弄清楚如何做概率。
pattern = '{0}: [{1:1.3f}, {2:1.3f})'
count = 1 # a counter to keep track of the index
pre_p = distribution[0]
p = distribution[1]
# Here we will print it out at the end in the format you said in the question
for entry in my_list:
print(pattern.format(entry[0], pre_p, p))
pre_p += distribution[count]
p += distribution[count+1]
count = count + 1
输出:
0: [0.000, 0.017)
1: [0.017, 0.039)
2: [0.039, 0.072)
3: [0.072, 0.105)
4: [0.105, 0.134)
5: [0.134, 0.162)
6: [0.162, 0.197)
7: [0.197, 0.229)
8: [0.229, 0.257)
9: [0.257, 0.284)
a: [0.284, 0.303)
b: [0.303, 0.325)
c: [0.325, 0.354)
d: [0.354, 0.384)
e: [0.384, 0.412)
f: [0.412, 0.447)
g: [0.447, 0.473)
h: [0.473, 0.510)
i: [0.510, 0.539)
j: [0.539, 0.564)
k: [0.564, 0.589)
l: [0.589, 0.626)
m: [0.626, 0.651)
n: [0.651, 0.674)
o: [0.674, 0.700)
p: [0.700, 0.735)
q: [0.735, 0.768)
r: [0.768, 0.799)
s: [0.799, 0.822)
t: [0.822, 0.844)
u: [0.844, 0.882)
v: [0.882, 0.904)
w: [0.904, 0.920)
x: [0.920, 0.946)
y: [0.946, 0.967)
z: [0.967, 1.000)
完整来源位于:http://codepad.org/a6YkHhed
答案 2 :(得分:1)
创建字典,键是您的字符,值是定义下限和上限的对。
prev_p = 0
bounds = {}
for line in open(a_file):
character, p = parse_the_line(line)
bounds[character] = (prev_p, p)
prev_p = p