给出以下描述SVG三次贝塞尔曲线的路径(例如):“M300,140C300,40,500,40,500,140”, 并假设连接端点300,140至500,140的直线(关闭曲线下方的区域),是否可以计算如此封闭的区域?
有人可以建议使用公式(或JavaScript)来完成此任务吗?
答案 0 :(得分:49)
Convert the path to a polygon任意精度,然后calculate the area of the polygon。
上述演示的核心是adaptively subdividing path into a polygon和computing the area of a polygon:
的功能// path: an SVG <path> element
// threshold: a 'close-enough' limit (ignore subdivisions with area less than this)
// segments: (optional) how many segments to subdivisions to create at each level
// returns: a new SVG <polygon> element
function pathToPolygonViaSubdivision(path,threshold,segments){
if (!threshold) threshold = 0.0001; // Get really, really close
if (!segments) segments = 3; // 2 segments creates 0-area triangles
var points = subdivide( ptWithLength(0), ptWithLength( path.getTotalLength() ) );
for (var i=points.length;i--;) points[i] = [points[i].x,points[i].y];
var doc = path.ownerDocument;
var poly = doc.createElementNS('http://www.w3.org/2000/svg','polygon');
poly.setAttribute('points',points.join(' '));
return poly;
// Record the distance along the path with the point for later reference
function ptWithLength(d) {
var pt = path.getPointAtLength(d); pt.d = d; return pt;
}
// Create segments evenly spaced between two points on the path.
// If the area of the result is less than the threshold return the endpoints.
// Otherwise, keep the intermediary points and subdivide each consecutive pair.
function subdivide(p1,p2){
var pts=[p1];
for (var i=1,step=(p2.d-p1.d)/segments;i<segments;i++){
pts[i] = ptWithLength(p1.d + step*i);
}
pts.push(p2);
if (polyArea(pts)<=threshold) return [p1,p2];
else {
var result = [];
for (var i=1;i<pts.length;++i){
var mids = subdivide(pts[i-1], pts[i]);
mids.pop(); // We'll get the last point as the start of the next pair
result = result.concat(mids)
}
result.push(p2);
return result;
}
}
// Calculate the area of an polygon represented by an array of points
function polyArea(points){
var p1,p2;
for(var area=0,len=points.length,i=0;i<len;++i){
p1 = points[i];
p2 = points[(i-1+len)%len]; // Previous point, with wraparound
area += (p2.x+p1.x) * (p2.y-p1.y);
}
return Math.abs(area/2);
}
}
// Return the area for an SVG <polygon> or <polyline>
// Self-crossing polys reduce the effective 'area'
function polyArea(poly){
var area=0,pts=poly.points,len=pts.numberOfItems;
for(var i=0;i<len;++i){
var p1 = pts.getItem(i), p2=pts.getItem((i+-1+len)%len);
area += (p2.x+p1.x) * (p2.y-p1.y);
}
return Math.abs(area/2);
}
以下是原始答案,它使用不同的(非自适应)技术将<path>
转换为<polygon>
。
上述演示的核心是approximating a path with a polygon和computing the area of a polygon。
的功能// Calculate the area of an SVG polygon/polyline
function polyArea(poly){
var area=0,pts=poly.points,len=pts.numberOfItems;
for(var i=0;i<len;++i){
var p1 = pts.getItem(i), p2=pts.getItem((i+len-1)%len);
area += (p2.x+p1.x) * (p2.y-p1.y);
}
return Math.abs(area/2);
}
// Create a <polygon> approximation for an SVG <path>
function pathToPolygon(path,samples){
if (!samples) samples = 0;
var doc = path.ownerDocument;
var poly = doc.createElementNS('http://www.w3.org/2000/svg','polygon');
// Put all path segments in a queue
for (var segs=[],s=path.pathSegList,i=s.numberOfItems-1;i>=0;--i)
segs[i] = s.getItem(i);
var segments = segs.concat();
var seg,lastSeg,points=[],x,y;
var addSegmentPoint = function(s){
if (s.pathSegType == SVGPathSeg.PATHSEG_CLOSEPATH){
}else{
if (s.pathSegType%2==1 && s.pathSegType>1){
x+=s.x; y+=s.y;
}else{
x=s.x; y=s.y;
}
var last = points[points.length-1];
if (!last || x!=last[0] || y!=last[1]) points.push([x,y]);
}
};
for (var d=0,len=path.getTotalLength(),step=len/samples;d<=len;d+=step){
var seg = segments[path.getPathSegAtLength(d)];
var pt = path.getPointAtLength(d);
if (seg != lastSeg){
lastSeg = seg;
while (segs.length && segs[0]!=seg) addSegmentPoint( segs.shift() );
}
var last = points[points.length-1];
if (!last || pt.x!=last[0] || pt.y!=last[1]) points.push([pt.x,pt.y]);
}
for (var i=0,len=segs.length;i<len;++i) addSegmentPoint(segs[i]);
for (var i=0,len=points.length;i<len;++i) points[i] = points[i].join(',');
poly.setAttribute('points',points.join(' '));
return poly;
}
答案 1 :(得分:10)
我犹豫是要发表评论或完整回复。但是,简单的谷歌搜索“区域贝塞尔曲线”导致前三个链接(第一个是同一个帖子),在:
http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
使用发散定理提供封闭形式的解决方案。我很惊讶OP没有找到这个链接。
如果网站出现故障,请复制文本,并将回复的作者Kalle Rutanen记入帐户:
一个有趣的问题。对于2D中的任何分段可微曲线, 以下一般程序为您提供曲线内的区域/ 系列曲线。对于多项式曲线(贝塞尔曲线),您将获得 封闭式解决方案。
设g(t)为分段可微曲线,0 <= t <= 1.g(t) 顺时针方向,g(1)= g(0)。
设F(x,y)= [x,y] / 2
然后div(F(x,y))= 1,其中div表示发散。
现在,散度定理给出了闭合曲线内的区域 g(t)作为沿曲线的积分线:
int(dot(F(g(t)),perp(g'(t)))dt,t = 0..1) =(1/2)* int(dot(g(t),perp(g'(t)))dt,t = 0..1)
perp(x,y)=( - y,x)
其中int用于积分,'用于区分,点用于点 产品。必须将集成拼接到相应的部件 到平滑的曲线段。
现在举例。取Bezier度3和一条这样的曲线 控制点(x0,y0),(x1,y1),(x2,y2),(x3,y3)。积分 在这条曲线上是:
I:= 3/10 * y1 * x0 - 3/20 * y1 * x2 - 3/20 * y1 * x3 - 3/10 * y0 * x1 - 3/20 * y0 * x2 - 1/20 * y0 * x3 + 3/20 * y2 * x0 + 3 / 20 * y2 * x1 - 3/10 * y2 * x3 + 1/20 * y3 * x0 + 3/20 * y3 * x1 + 3/10 * y3 * x2
为序列中的每条曲线计算并加起来。总和 是由曲线包围的区域(假设曲线形成一个循环)。
如果曲线只包含一条贝塞尔曲线,那么它必须是x3 = x0和y3 = y0,区域为:
面积:= 3/20 * y1 * x0 - 3/20 * y1 * x2 - 3/20 * y0 * x1 + 3 / 20 * y0 * x2 - 3/20 * y2 * x0 + 3/20 * y2 * x1
希望我没有犯错误。
-
Kalle Rutanen
http://kaba.hilvi.org
答案 2 :(得分:2)
首先,我对bezier曲线并不那么熟悉,但我知道它们是连续的函数。如果确保三次曲线不与自身相交,则可以在给定的封闭域([ab])上将其以闭合形式(我的意思是使用分析积分)进行积分,并减去由末端形成的三角形区域。连接直线和X轴。如果与贝塞尔曲线和末端连接直线相交,您可以分成几个部分并尝试以一致的方式分别计算每个区域。
对我来说,合适的搜索词是“连续功能整合”“积分”“功能区域”“微积分”
当然,您可以从贝塞尔曲线fn生成离散数据,并获得离散的X-Y数据并近似计算积分。
答案 3 :(得分:2)
我喜欢Phrogz接受的答案中的解决方案,但我也看得更远,并找到了使用CompoundPath
类和area
属性对Paper.js执行相同操作的方法。 See my Paper.js demo
使用阈值0时,结果(表面积= 11856)与Phrogz's demo完全相同,但处理速度似乎更快!我知道加载Paper.js只是为了计算表面积是有点过头了,但是如果你正在考虑实现一个框架或者想调查Paper.js是如何做的那样......
答案 4 :(得分:1)
我遇到了同样的问题,但是我没有使用JavaScript,所以无法使用@Phrogz的可接受答案。另外,根据Mozilla,弃用了已接受答案中的SVGPathElement.getPointAtLength()
。
在描述带有点(x0/y0)
,(x1/y1)
,(x2/y2)
和(x3/y3)
(其中(x0/y0)
是起点,{{1} })),您可以使用参数化形式:
(来源:Wikipedia)
,其中 B (t)是贝塞尔曲线上的点,而 P i 是贝塞尔曲线定义的点点(请参见上文, P 0 是起点,...)。 t 是0≤ t ≤1的运行变量。
这种形式可以很容易地近似贝塞尔曲线:使用 t = i / n 可以生成任意数量的点。 i> 点。 (请注意,您必须添加起点和终点)。结果是一个多边形。然后,您可以使用shoelace formular(就像@Phrogz在他的解决方案中所做的那样)来计算面积。请注意,对于鞋带配方师,点的顺序很重要。通过使用 t 作为参数,顺序将总是正确。
为了匹配这个问题,这里是一个示例,也是用javascript编写的。这可以被其他语言采用。它不使用任何javascript(或svg)特定的命令(图纸除外)。
这里的结果是300的面积。图中的长度为30,高度为10。“波”是对称的,它们相互抵消。所以这个区域是正确的。
(x3/y3)
// only for the demo to show the points and the bezier curve
var svg = document.getElementById("svg");
var bezier_points = getBezierPathPoints(svg);
// in this example there is only one bezier curve
bezier_points = bezier_points[0];
var approx_points = getBezierApproxPoints(bezier_points, 10);
// add corners to have a closed arae
approx_points.unshift([0, 0]);
approx_points.push([30, 0]);
// add the circles
var doc = svg.ownerDocument;
for(i = 0; i < approx_points.length; i++){
let circle = doc.createElementNS('http://www.w3.org/2000/svg', 'circle');
circle.setAttribute('cx', approx_points[i][0]);
circle.setAttribute('cy', approx_points[i][1]);
circle.setAttribute('r', 1);
circle.setAttribute('fill', '#449944');
svg.appendChild(circle);
}
console.log("The area is ", polyArea(approx_points));
/**
* Approximate the bezier curve points.
*
* @param bezier_points: object, the points that define the
* bezier curve
* @param point_number: int, the number of points to use to
* approximate the bezier curve
*
* @return Array, an array which contains arrays where the
* index 0 contains the x and the index 1 contains the
* y value as floats
*/
function getBezierApproxPoints(bezier_points, point_number){
var approx_points = [];
// add the starting point
approx_points.push([bezier_points["x0"], bezier_points["y0"]]);
// implementation of the bezier curve as B(t), for futher
// information visit
// https://wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B%C3%A9zier_curves
var bezier = function(t, p0, p1, p2, p3){
return Math.pow(1 - t, 3) * p0 +
3 * Math.pow(1 - t, 2) * t * p1 +
3 * (1 - t) * Math.pow(t, 2) * p2 +
Math.pow(t, 3) * p3;
};
// Go through the number of points, divide the total t (which is
// between 0 and 1) by the number of points. (Note that this is
// point_number - 1 and starting at i = 1 because of adding the
// start and the end points.)
// Also note that using the t parameter this will make sure that
// the order of the points is correct.
for(var i = 1; i < point_number - 1; i++){
let t = i / (point_number - 1);
approx_points.push([
// calculate the value for x for the current t
bezier(
t,
bezier_points["x0"],
bezier_points["x1"],
bezier_points["x2"],
bezier_points["x3"]
),
// calculate the y value
bezier(
t,
bezier_points["y0"],
bezier_points["y1"],
bezier_points["y2"],
bezier_points["y3"]
)
]);
}
// Add the end point. Note that it is important to do this
// **after** the other points. Otherwise the polygon will
// have a weird form and the shoelace formular for calculating
// the area will get a weird result.
approx_points.push([bezier_points["x3"], bezier_points["y3"]]);
return approx_points;
}
/**
* Get the bezier curve values of THIS example path.
*
* @param svg: SVGElement, the svg
*
* @return object, the bezier curve
*/
function getBezierPathPoints(svg){
var path = svg.getElementById("path");
var path_segments = path.pathSegList;
var points = [];
var x = 0;
var y = 0;
for(index in path_segments){
if(path_segments[index]["pathSegTypeAsLetter"] == "C"){
let bezier = {};
// start is the end point of the last element
bezier["x0"] = x;
bezier["y0"] = y;
bezier["x1"] = path_segments[index]["x1"];
bezier["y1"] = path_segments[index]["y1"];
bezier["x2"] = path_segments[index]["x2"];
bezier["y2"] = path_segments[index]["y2"];
bezier["x3"] = path_segments[index]["x"];
bezier["y3"] = path_segments[index]["y"];
points.push(bezier);
}
x = path_segments[index]["x"];
y = path_segments[index]["y"];
}
return points;
}
/**
* Calculate the area of a polygon. The pts are the
* points which define the polygon. This is
* implementing the shoelace formular.
*
* @param pts: Array, the points
*
* @return float, the area
*/
function polyArea(pts){
var area = 0;
var n = pts.length;
for(var i = 0; i < n; i++){
area += (pts[i][1] + pts[(i + 1) % n][1]) * (pts[i][0] - pts[(i + 1) % n][0]);
}
return Math.abs(area / 2);
}
答案 5 :(得分:0)
<html>
<body>
<!--Square area covered by radius vector of a point moving in 2D plane is 1/2*integral[(x-xc)*dy/dt - (y-yc)*dx/dt]dt .
Here xc and yc are coordinates of the origin point (center).
Derivation for the case of Bezier curves is rather cumbersome but possible.
See functions squareAreaQuadr and squareAreaCubic below.
I have tested and retested these formulae, rather sure, that there are no mistakes.
This signature gives positive square area for clockwise rotation in SVG coordinates plane.-->
<h1>Bezier square area</h1>
<p id="q">Quadratic: S = </p>
<svg height="500" width="500">
<rect width="500" height="500" style="fill:none; stroke-width:2; stroke:black" />
<path id="quadr" fill="lightgray" stroke="red" stroke-width="1" />
<circle id="q_center" r="5" fill="black" />
</svg>
<script>
var xc=0.1, yc=0.2, x0=0.9, y0=0.1, x1=0.9, y1=0.9, x2=0.1, y2=0.9;
var quadr = document.getElementById("quadr");
quadr.setAttribute("d", "M "+xc*500+" "+yc*500+" L "+x0*500+" "+y0*500+" Q "+x1*500+" "+y1*500+" "+x2*500+" "+y2*500+" L "+xc*500+" "+yc*500);
var center = document.getElementById("q_center");
q_center.setAttribute("cx", xc*500);
q_center.setAttribute("cy", yc*500);
function squareAreaQuadr(xc, yc, x0, y0, x1, y1, x2, y2)
{
var s = 1/2*( (x0-xc)*(y1-y0) + (x2-xc)*(y2-y1) - (y0-yc)*(x1-x0) - (y2-yc)*(x2-x1) ) +
1/12*( (x2-x0)*(2*y1-y0-y2) - (y2-y0)*(2*x1-x0-x2) );
return s;
}
var s = squareAreaQuadr(xc, yc, x0, y0, x1, y1, x2, y2);
document.getElementById("q").innerHTML = document.getElementById("q").innerHTML + s.toString();
</script>
<p id="c">Cubic: S = </p>
<svg height="500" width="500">
<rect width="500" height="500" style="fill:none; stroke-width:2; stroke:black" />
<path id="cubic" fill="lightgray" stroke="red" stroke-width="1" />
<circle id="center1" r="5" fill="black" />
</svg>
<script>
var xc=0.1, yc=0.2, x0=0.9, y0=0.1, x1=0.9, y1=0.9, x2=0.5, y2=0.5, x3=0.1, y3=0.9
var cubic = document.getElementById("cubic");
cubic.setAttribute("d", "M "+xc*500+" "+yc*500+" L "+x0*500+" "+y0*500+" C "+x1*500+" "+y1*500+" "+x2*500+" "+y2*500+" "+x3*500+" "+y3*500+" L "+xc*500+" "+yc*500);
var center1 = document.getElementById("center1");
center1.setAttribute("cx", xc*500);
center1.setAttribute("cy", yc*500);
function squareAreaCubic(xc, yc, x0, y0, x1, y1, x2, y2, x3, y3)
{
var s;
s = 3/4*( (x0-xc)*(y1-y0) + (x3-xc)*(y3-y2) ) +
1/4*(x3-x0)*(y1+y2-y0-y3) +
1/8*( (x0+x3-2*xc)*(3*y2-3*y1+y0-y3) + (x1+x2-x0-x3)*(y1-y0+y3-y2) ) +
3/40*( (2*x1-x0-x2)*(y1-y0) + (2*x2-x1-x3)*(y3-y2) ) +
1/20*( (2*x1-x0-x2)*(y3-y2) + (2*x2-x1-x3)*(y1-y0) + (x1+x2-x0-x3)*(3*y2-3*y1+y0-y3) ) +
1/40*(x1+x2-x0-x3)*(3*y2-3*y1+y0-y3) -
3/4*( (y0-yc)*(x1-x0) + (y3-yc)*(x3-x2) ) -
1/4*(y3-y0)*(x1+x2-x0-x3) -
1/8*( (y0+y3-2*yc)*(3*x2-3*x1+x0-x3) + (y1+y2-y0-y3)*(x1-x0+x3-x2) ) -
3/40*( (2*y1-y0-y2)*(x1-x0) + (2*y2-y1-y3)*(x3-x2) ) -
1/20*( (2*y1-y0-y2)*(x3-x2) + (2*y2-y1-y3)*(x1-x0) + (y1+y2-y0-y3)*(3*x2-3*x1+x0-x3) ) -
1/40*(y1+y2-y0-y3)*(3*x2-3*x1+x0-x3) ;
return s;
}
var s = squareAreaCubic(xc, yc, x0, y0, x1, y1, x2, y2, x3, y3);
document.getElementById("c").innerHTML = document.getElementById("c").innerHTML + s.toString();
</script>
</body>
</html>