我在熊猫dataframe
中有一系列温度和辐射系列。时间分辨率是常规步骤1分钟。
import datetime
import pandas as pd
import numpy as np
date_times = pd.date_range(datetime.datetime(2012, 4, 5, 8, 0),
datetime.datetime(2012, 4, 5, 12, 0),
freq='1min')
tamb = np.random.sample(date_times.size) * 10.0
radiation = np.random.sample(date_times.size) * 10.0
frame = pd.DataFrame(data={'tamb': tamb, 'radiation': radiation},
index=date_times)
frame
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 241 entries, 2012-04-05 08:00:00 to 2012-04-05 12:00:00
Freq: T
Data columns:
radiation 241 non-null values
tamb 241 non-null values
dtypes: float64(2)
如何将此dataframe
下采样至一小时的分辨率,计算温度的每小时平均值和辐射的每小时总和?
答案 0 :(得分:48)
使用pandas 0.18,重新采样API发生了变化(请参阅docs)。 所以对于pandas&gt; = 0.18,答案是:
In [31]: frame.resample('1H').agg({'radiation': np.sum, 'tamb': np.mean})
Out[31]:
tamb radiation
2012-04-05 08:00:00 5.161235 279.507182
2012-04-05 09:00:00 4.968145 290.941073
2012-04-05 10:00:00 4.478531 317.678285
2012-04-05 11:00:00 4.706206 335.258633
2012-04-05 12:00:00 2.457873 8.655838
旧答案:
我正在回答我的问题,以反映pandas >= 0.8
中与时间序列相关的更改(所有其他答案都已过时)。
使用pandas&gt; = 0.8答案是:
In [30]: frame.resample('1H', how={'radiation': np.sum, 'tamb': np.mean})
Out[30]:
tamb radiation
2012-04-05 08:00:00 5.161235 279.507182
2012-04-05 09:00:00 4.968145 290.941073
2012-04-05 10:00:00 4.478531 317.678285
2012-04-05 11:00:00 4.706206 335.258633
2012-04-05 12:00:00 2.457873 8.655838
答案 1 :(得分:3)
您还可以使用pandas.DateRange
objects的asof
方法进行缩减采样。
In [21]: hourly = pd.DateRange(datetime.datetime(2012, 4, 5, 8, 0),
... datetime.datetime(2012, 4, 5, 12, 0),
... offset=pd.datetools.Hour())
In [22]: frame.groupby(hourly.asof).size()
Out[22]:
key_0
2012-04-05 08:00:00 60
2012-04-05 09:00:00 60
2012-04-05 10:00:00 60
2012-04-05 11:00:00 60
2012-04-05 12:00:00 1
In [23]: frame.groupby(hourly.asof).agg({'radiation': np.sum, 'tamb': np.mean})
Out[23]:
radiation tamb
key_0
2012-04-05 08:00:00 271.54 4.491
2012-04-05 09:00:00 266.18 5.253
2012-04-05 10:00:00 292.35 4.959
2012-04-05 11:00:00 283.00 5.489
2012-04-05 12:00:00 0.5414 9.532
答案 2 :(得分:3)
为了诱惑你,在pandas 0.8.0中(在GitHub上timeseries
分支的重大开发中),你将能够做到:
In [5]: frame.convert('1h', how='mean')
Out[5]:
radiation tamb
2012-04-05 08:00:00 7.840989 8.446109
2012-04-05 09:00:00 4.898935 5.459221
2012-04-05 10:00:00 5.227741 4.660849
2012-04-05 11:00:00 4.689270 5.321398
2012-04-05 12:00:00 4.956994 5.093980
上述方法是使用当前生产版本的pandas的正确策略。
答案 3 :(得分:0)
您需要使用groupby
:
grouped = frame.groupby(lambda x: x.hour)
grouped.agg({'radiation': np.sum, 'tamb': np.mean})
# Same as: grouped.agg({'radiation': 'sum', 'tamb': 'mean'})
输出为:
radiation tamb
key_0
8 298.581107 4.883806
9 311.176148 4.983705
10 315.531527 5.343057
11 288.013876 6.022002
12 5.527616 8.507670
所以从本质上讲,我会分析小时值,然后计算tamb
的平均值和radiation
的总和并返回DataFrame
(类似于R的{{1} }})。有关详细信息,请查看groupby的文档页面以及this博文。
修改:为了使这个比例更好,您可以在日期和时间上进行分组:
ddply