使用R中的doBy包,我们对组进行总结,并获得与原始数据相同的形状和顺序的结果:
> require(doBy)
> df <- data.frame(
first = c('bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'),
second = c('one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'),
data = c(-0.424972, 0.567020, 0.276232, -1.087401, -0.673690, 0.113648, -1.478427, 0.524988))
> df
first second data
1 bar one -0.424972
2 bar two 0.567020*emphasized text*
3 baz one 0.276232
4 baz two -1.087401
5 foo one -0.673690
6 foo two 0.113648
7 qux one -1.478427
8 qux two 0.524988
> df['data.sum'] = summaryBy(data~first, data=df, FUN=sum, full.dimension=T)['data.sum']
> df
first second data data.sum
1 bar one -0.424972 0.142048
2 bar two 0.567020 0.142048
3 baz one 0.276232 -0.811169
4 baz two -1.087401 -0.811169
5 foo one -0.673690 -0.560042
6 foo two 0.113648 -0.560042
7 qux one -1.478427 -0.953439
8 qux two 0.524988 -0.953439
当DataFrame
按多个索引之一分组时,有没有办法在pandas中做同样的事情?
>>> from pandas import DataFrame
>>> df = DataFrame({
'first': ['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
'second': ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'],
'data': [-0.424972, 0.567020, 0.276232, -1.087401, -0.673690, 0.113648, -1.478427, 0.524988] })
>>> df = df.set_index(['first', 'second'])
>>> s = df.groupby(level='first')['data'].sum()
>>> df.join(s, on='first', rsuffix='.sum')
KeyError: 'no item named first'
答案 0 :(得分:2)
怎么样:
df['data.sum'] = df.groupby('first')['data'].transform(np.sum)
您还可以将as_index=False
传递给groupby,以便在聚合时获得更多类似R的行为(或在结果上调用reset_index
)
答案 1 :(得分:0)
怎么样
from pandas import *
df = DataFrame({
'first': ['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
'second': ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'],
'data': [-0.424972, 0.567020, 0.276232, -1.087401, -0.673690, 0.113648, -1.478427, 0.524988]
})
df2 = df.join(df.groupby("first").sum().rename(columns={"data":"sum_data"}),
on="first")