我已经实现了浮点小数到有理分数近似的算法(例如:0.333 - > 1/3),现在我想知道,有没有办法找到满足条件的无理数。例如,给定输入0.282842712474我希望结果为sqrt(2)/ 5而不是我的算法生成的431827/1526739。唯一的条件是结果的第一个数字(转换回浮点数)应该是输入的数字,其余的无关紧要。提前谢谢!
答案 0 :(得分:3)
我提出了解决方案,从给定的一组可能的分母和提名者中找到给定数字的最佳近似值。
例如,此集可以包含可以通过以下方式创建的所有数字:
1< = radicand< = 100000
1< = root_index< = 20
如果set有N个元素,则此解决方案在O(N log N)中找到最佳近似值。
在这个解决方案中,X代表分母和Y分子。
我无法抗拒,我实施了它:
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
struct Number {
// number value
double value;
// number representation
int root_index;
int radicand;
Number(){}
Number(double value, int root_index, int radicand)
: value(value), root_index(root_index), radicand(radicand) {}
bool operator < (const Number& rhs) const {
// in case of equal numbers, i want smaller radicand first
if (fabs(value - rhs.value) < 1e-12) return radicand < rhs.radicand;
return value < rhs.value;
}
void print() const {
if (value - (int)value < 1e-12) printf("%.0f", value);
else printf("sqrt_%d(%d)",root_index, radicand);
}
};
std::vector<Number> numbers;
double best_result = 1e100;
Number best_numerator;
Number best_denominator;
double input;
void compare_approximpation(const Number& numerator, const Number& denominator) {
double value = numerator.value / denominator.value;
if (fabs(value - input) < fabs(best_result - input)) {
best_result = value;
best_numerator = numerator;
best_denominator = denominator;
}
}
int main() {
const int NUMBER_LIMIT = 100000;
const int ROOT_LIMIT = 20;
// only numbers created by this loops will be used
// as numerator and denominator
for(int i=1; i<=ROOT_LIMIT; i++) {
for(int j=1; j<=NUMBER_LIMIT; j++) {
double value = pow(j, 1.0 /i);
numbers.push_back(Number(value, i, j));
}
}
sort(numbers.begin(), numbers.end());
scanf("%lf",&input);
int numerator_index = 0;
for(int denominator_index=0; denominator_index<numbers.size(); denominator_index++) {
// you were interested only in integral denominators
if (numbers[denominator_index].root_index == 1) {
// i use simple sweeping technique instead of binary search (its faster)
while(numerator_index < numbers.size() && numbers[numerator_index].root_index &&
numbers[numerator_index].value / numbers[denominator_index].value <= input) {
numerator_index++;
}
// comparing approximations
compare_approximpation(numbers[numerator_index], numbers[denominator_index]);
if (numerator_index > 0) {
compare_approximpation(numbers[numerator_index - 1], numbers[denominator_index]);
}
}
}
printf("Best approximation %.12lf = ", best_numerator.value / best_denominator.value);
best_numerator.print();
printf(" / ");
best_denominator.print();
printf("\n");
}